alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! [`push`]: Vec::push
53
54#![stable(feature = "rust1", since = "1.0.0")]
55
56#[cfg(not(no_global_oom_handling))]
57use core::cmp;
58use core::cmp::Ordering;
59use core::hash::{Hash, Hasher};
60#[cfg(not(no_global_oom_handling))]
61use core::iter;
62use core::marker::PhantomData;
63use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
64use core::ops::{self, Index, IndexMut, Range, RangeBounds};
65use core::ptr::{self, NonNull};
66use core::slice::{self, SliceIndex};
67use core::{fmt, intrinsics};
68
69#[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
70pub use self::extract_if::ExtractIf;
71use crate::alloc::{Allocator, Global};
72use crate::borrow::{Cow, ToOwned};
73use crate::boxed::Box;
74use crate::collections::TryReserveError;
75use crate::raw_vec::RawVec;
76
77mod extract_if;
78
79#[cfg(not(no_global_oom_handling))]
80#[stable(feature = "vec_splice", since = "1.21.0")]
81pub use self::splice::Splice;
82
83#[cfg(not(no_global_oom_handling))]
84mod splice;
85
86#[stable(feature = "drain", since = "1.6.0")]
87pub use self::drain::Drain;
88
89mod drain;
90
91#[cfg(not(no_global_oom_handling))]
92mod cow;
93
94#[cfg(not(no_global_oom_handling))]
95pub(crate) use self::in_place_collect::AsVecIntoIter;
96#[stable(feature = "rust1", since = "1.0.0")]
97pub use self::into_iter::IntoIter;
98
99mod into_iter;
100
101#[cfg(not(no_global_oom_handling))]
102use self::is_zero::IsZero;
103
104#[cfg(not(no_global_oom_handling))]
105mod is_zero;
106
107#[cfg(not(no_global_oom_handling))]
108mod in_place_collect;
109
110mod partial_eq;
111
112#[cfg(not(no_global_oom_handling))]
113use self::spec_from_elem::SpecFromElem;
114
115#[cfg(not(no_global_oom_handling))]
116mod spec_from_elem;
117
118#[cfg(not(no_global_oom_handling))]
119use self::set_len_on_drop::SetLenOnDrop;
120
121#[cfg(not(no_global_oom_handling))]
122mod set_len_on_drop;
123
124#[cfg(not(no_global_oom_handling))]
125use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
126
127#[cfg(not(no_global_oom_handling))]
128mod in_place_drop;
129
130#[cfg(not(no_global_oom_handling))]
131use self::spec_from_iter_nested::SpecFromIterNested;
132
133#[cfg(not(no_global_oom_handling))]
134mod spec_from_iter_nested;
135
136#[cfg(not(no_global_oom_handling))]
137use self::spec_from_iter::SpecFromIter;
138
139#[cfg(not(no_global_oom_handling))]
140mod spec_from_iter;
141
142#[cfg(not(no_global_oom_handling))]
143use self::spec_extend::SpecExtend;
144
145#[cfg(not(no_global_oom_handling))]
146mod spec_extend;
147
148/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
149///
150/// # Examples
151///
152/// ```
153/// let mut vec = Vec::new();
154/// vec.push(1);
155/// vec.push(2);
156///
157/// assert_eq!(vec.len(), 2);
158/// assert_eq!(vec[0], 1);
159///
160/// assert_eq!(vec.pop(), Some(2));
161/// assert_eq!(vec.len(), 1);
162///
163/// vec[0] = 7;
164/// assert_eq!(vec[0], 7);
165///
166/// vec.extend([1, 2, 3]);
167///
168/// for x in &vec {
169///     println!("{x}");
170/// }
171/// assert_eq!(vec, [7, 1, 2, 3]);
172/// ```
173///
174/// The [`vec!`] macro is provided for convenient initialization:
175///
176/// ```
177/// let mut vec1 = vec![1, 2, 3];
178/// vec1.push(4);
179/// let vec2 = Vec::from([1, 2, 3, 4]);
180/// assert_eq!(vec1, vec2);
181/// ```
182///
183/// It can also initialize each element of a `Vec<T>` with a given value.
184/// This may be more efficient than performing allocation and initialization
185/// in separate steps, especially when initializing a vector of zeros:
186///
187/// ```
188/// let vec = vec![0; 5];
189/// assert_eq!(vec, [0, 0, 0, 0, 0]);
190///
191/// // The following is equivalent, but potentially slower:
192/// let mut vec = Vec::with_capacity(5);
193/// vec.resize(5, 0);
194/// assert_eq!(vec, [0, 0, 0, 0, 0]);
195/// ```
196///
197/// For more information, see
198/// [Capacity and Reallocation](#capacity-and-reallocation).
199///
200/// Use a `Vec<T>` as an efficient stack:
201///
202/// ```
203/// let mut stack = Vec::new();
204///
205/// stack.push(1);
206/// stack.push(2);
207/// stack.push(3);
208///
209/// while let Some(top) = stack.pop() {
210///     // Prints 3, 2, 1
211///     println!("{top}");
212/// }
213/// ```
214///
215/// # Indexing
216///
217/// The `Vec` type allows access to values by index, because it implements the
218/// [`Index`] trait. An example will be more explicit:
219///
220/// ```
221/// let v = vec![0, 2, 4, 6];
222/// println!("{}", v[1]); // it will display '2'
223/// ```
224///
225/// However be careful: if you try to access an index which isn't in the `Vec`,
226/// your software will panic! You cannot do this:
227///
228/// ```should_panic
229/// let v = vec![0, 2, 4, 6];
230/// println!("{}", v[6]); // it will panic!
231/// ```
232///
233/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
234/// the `Vec`.
235///
236/// # Slicing
237///
238/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
239/// To get a [slice][prim@slice], use [`&`]. Example:
240///
241/// ```
242/// fn read_slice(slice: &[usize]) {
243///     // ...
244/// }
245///
246/// let v = vec![0, 1];
247/// read_slice(&v);
248///
249/// // ... and that's all!
250/// // you can also do it like this:
251/// let u: &[usize] = &v;
252/// // or like this:
253/// let u: &[_] = &v;
254/// ```
255///
256/// In Rust, it's more common to pass slices as arguments rather than vectors
257/// when you just want to provide read access. The same goes for [`String`] and
258/// [`&str`].
259///
260/// # Capacity and reallocation
261///
262/// The capacity of a vector is the amount of space allocated for any future
263/// elements that will be added onto the vector. This is not to be confused with
264/// the *length* of a vector, which specifies the number of actual elements
265/// within the vector. If a vector's length exceeds its capacity, its capacity
266/// will automatically be increased, but its elements will have to be
267/// reallocated.
268///
269/// For example, a vector with capacity 10 and length 0 would be an empty vector
270/// with space for 10 more elements. Pushing 10 or fewer elements onto the
271/// vector will not change its capacity or cause reallocation to occur. However,
272/// if the vector's length is increased to 11, it will have to reallocate, which
273/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
274/// whenever possible to specify how big the vector is expected to get.
275///
276/// # Guarantees
277///
278/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
279/// about its design. This ensures that it's as low-overhead as possible in
280/// the general case, and can be correctly manipulated in primitive ways
281/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
282/// If additional type parameters are added (e.g., to support custom allocators),
283/// overriding their defaults may change the behavior.
284///
285/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
286/// triplet. No more, no less. The order of these fields is completely
287/// unspecified, and you should use the appropriate methods to modify these.
288/// The pointer will never be null, so this type is null-pointer-optimized.
289///
290/// However, the pointer might not actually point to allocated memory. In particular,
291/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
292/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
293/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
294/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
295/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
296/// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
297/// details are very subtle --- if you intend to allocate memory using a `Vec`
298/// and use it for something else (either to pass to unsafe code, or to build your
299/// own memory-backed collection), be sure to deallocate this memory by using
300/// `from_raw_parts` to recover the `Vec` and then dropping it.
301///
302/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
303/// (as defined by the allocator Rust is configured to use by default), and its
304/// pointer points to [`len`] initialized, contiguous elements in order (what
305/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
306/// logically uninitialized, contiguous elements.
307///
308/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
309/// visualized as below. The top part is the `Vec` struct, it contains a
310/// pointer to the head of the allocation in the heap, length and capacity.
311/// The bottom part is the allocation on the heap, a contiguous memory block.
312///
313/// ```text
314///             ptr      len  capacity
315///        +--------+--------+--------+
316///        | 0x0123 |      2 |      4 |
317///        +--------+--------+--------+
318///             |
319///             v
320/// Heap   +--------+--------+--------+--------+
321///        |    'a' |    'b' | uninit | uninit |
322///        +--------+--------+--------+--------+
323/// ```
324///
325/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
326/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
327///   layout (including the order of fields).
328///
329/// `Vec` will never perform a "small optimization" where elements are actually
330/// stored on the stack for two reasons:
331///
332/// * It would make it more difficult for unsafe code to correctly manipulate
333///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
334///   only moved, and it would be more difficult to determine if a `Vec` had
335///   actually allocated memory.
336///
337/// * It would penalize the general case, incurring an additional branch
338///   on every access.
339///
340/// `Vec` will never automatically shrink itself, even if completely empty. This
341/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
342/// and then filling it back up to the same [`len`] should incur no calls to
343/// the allocator. If you wish to free up unused memory, use
344/// [`shrink_to_fit`] or [`shrink_to`].
345///
346/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
347/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
348/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
349/// accurate, and can be relied on. It can even be used to manually free the memory
350/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
351/// when not necessary.
352///
353/// `Vec` does not guarantee any particular growth strategy when reallocating
354/// when full, nor when [`reserve`] is called. The current strategy is basic
355/// and it may prove desirable to use a non-constant growth factor. Whatever
356/// strategy is used will of course guarantee *O*(1) amortized [`push`].
357///
358/// `vec![x; n]`, `vec![a, b, c, d]`, and
359/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
360/// with at least the requested capacity. If <code>[len] == [capacity]</code>,
361/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
362/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
363///
364/// `Vec` will not specifically overwrite any data that is removed from it,
365/// but also won't specifically preserve it. Its uninitialized memory is
366/// scratch space that it may use however it wants. It will generally just do
367/// whatever is most efficient or otherwise easy to implement. Do not rely on
368/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
369/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
370/// first, that might not actually happen because the optimizer does not consider
371/// this a side-effect that must be preserved. There is one case which we will
372/// not break, however: using `unsafe` code to write to the excess capacity,
373/// and then increasing the length to match, is always valid.
374///
375/// Currently, `Vec` does not guarantee the order in which elements are dropped.
376/// The order has changed in the past and may change again.
377///
378/// [`get`]: slice::get
379/// [`get_mut`]: slice::get_mut
380/// [`String`]: crate::string::String
381/// [`&str`]: type@str
382/// [`shrink_to_fit`]: Vec::shrink_to_fit
383/// [`shrink_to`]: Vec::shrink_to
384/// [capacity]: Vec::capacity
385/// [`capacity`]: Vec::capacity
386/// [mem::size_of::\<T>]: core::mem::size_of
387/// [len]: Vec::len
388/// [`len`]: Vec::len
389/// [`push`]: Vec::push
390/// [`insert`]: Vec::insert
391/// [`reserve`]: Vec::reserve
392/// [`MaybeUninit`]: core::mem::MaybeUninit
393/// [owned slice]: Box
394#[stable(feature = "rust1", since = "1.0.0")]
395#[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
396#[rustc_insignificant_dtor]
397pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
398    buf: RawVec<T, A>,
399    len: usize,
400}
401
402////////////////////////////////////////////////////////////////////////////////
403// Inherent methods
404////////////////////////////////////////////////////////////////////////////////
405
406impl<T> Vec<T> {
407    /// Constructs a new, empty `Vec<T>`.
408    ///
409    /// The vector will not allocate until elements are pushed onto it.
410    ///
411    /// # Examples
412    ///
413    /// ```
414    /// # #![allow(unused_mut)]
415    /// let mut vec: Vec<i32> = Vec::new();
416    /// ```
417    #[inline]
418    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
419    #[cfg_attr(not(test), rustc_diagnostic_item = "vec_new")]
420    #[stable(feature = "rust1", since = "1.0.0")]
421    #[must_use]
422    pub const fn new() -> Self {
423        Vec { buf: RawVec::new(), len: 0 }
424    }
425
426    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
427    ///
428    /// The vector will be able to hold at least `capacity` elements without
429    /// reallocating. This method is allowed to allocate for more elements than
430    /// `capacity`. If `capacity` is zero, the vector will not allocate.
431    ///
432    /// It is important to note that although the returned vector has the
433    /// minimum *capacity* specified, the vector will have a zero *length*. For
434    /// an explanation of the difference between length and capacity, see
435    /// *[Capacity and reallocation]*.
436    ///
437    /// If it is important to know the exact allocated capacity of a `Vec`,
438    /// always use the [`capacity`] method after construction.
439    ///
440    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
441    /// and the capacity will always be `usize::MAX`.
442    ///
443    /// [Capacity and reallocation]: #capacity-and-reallocation
444    /// [`capacity`]: Vec::capacity
445    ///
446    /// # Panics
447    ///
448    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
449    ///
450    /// # Examples
451    ///
452    /// ```
453    /// let mut vec = Vec::with_capacity(10);
454    ///
455    /// // The vector contains no items, even though it has capacity for more
456    /// assert_eq!(vec.len(), 0);
457    /// assert!(vec.capacity() >= 10);
458    ///
459    /// // These are all done without reallocating...
460    /// for i in 0..10 {
461    ///     vec.push(i);
462    /// }
463    /// assert_eq!(vec.len(), 10);
464    /// assert!(vec.capacity() >= 10);
465    ///
466    /// // ...but this may make the vector reallocate
467    /// vec.push(11);
468    /// assert_eq!(vec.len(), 11);
469    /// assert!(vec.capacity() >= 11);
470    ///
471    /// // A vector of a zero-sized type will always over-allocate, since no
472    /// // allocation is necessary
473    /// let vec_units = Vec::<()>::with_capacity(10);
474    /// assert_eq!(vec_units.capacity(), usize::MAX);
475    /// ```
476    #[cfg(not(no_global_oom_handling))]
477    #[inline]
478    #[stable(feature = "rust1", since = "1.0.0")]
479    #[must_use]
480    #[cfg_attr(not(test), rustc_diagnostic_item = "vec_with_capacity")]
481    #[track_caller]
482    pub fn with_capacity(capacity: usize) -> Self {
483        Self::with_capacity_in(capacity, Global)
484    }
485
486    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
487    ///
488    /// The vector will be able to hold at least `capacity` elements without
489    /// reallocating. This method is allowed to allocate for more elements than
490    /// `capacity`. If `capacity` is zero, the vector will not allocate.
491    ///
492    /// # Errors
493    ///
494    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
495    /// or if the allocator reports allocation failure.
496    #[inline]
497    #[unstable(feature = "try_with_capacity", issue = "91913")]
498    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
499        Self::try_with_capacity_in(capacity, Global)
500    }
501
502    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
503    ///
504    /// # Safety
505    ///
506    /// This is highly unsafe, due to the number of invariants that aren't
507    /// checked:
508    ///
509    /// * `ptr` must have been allocated using the global allocator, such as via
510    ///   the [`alloc::alloc`] function.
511    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
512    ///   (`T` having a less strict alignment is not sufficient, the alignment really
513    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
514    ///   allocated and deallocated with the same layout.)
515    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
516    ///   to be the same size as the pointer was allocated with. (Because similar to
517    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
518    /// * `length` needs to be less than or equal to `capacity`.
519    /// * The first `length` values must be properly initialized values of type `T`.
520    /// * `capacity` needs to be the capacity that the pointer was allocated with.
521    /// * The allocated size in bytes must be no larger than `isize::MAX`.
522    ///   See the safety documentation of [`pointer::offset`].
523    ///
524    /// These requirements are always upheld by any `ptr` that has been allocated
525    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
526    /// upheld.
527    ///
528    /// Violating these may cause problems like corrupting the allocator's
529    /// internal data structures. For example it is normally **not** safe
530    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
531    /// `size_t`, doing so is only safe if the array was initially allocated by
532    /// a `Vec` or `String`.
533    /// It's also not safe to build one from a `Vec<u16>` and its length, because
534    /// the allocator cares about the alignment, and these two types have different
535    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
536    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
537    /// these issues, it is often preferable to do casting/transmuting using
538    /// [`slice::from_raw_parts`] instead.
539    ///
540    /// The ownership of `ptr` is effectively transferred to the
541    /// `Vec<T>` which may then deallocate, reallocate or change the
542    /// contents of memory pointed to by the pointer at will. Ensure
543    /// that nothing else uses the pointer after calling this
544    /// function.
545    ///
546    /// [`String`]: crate::string::String
547    /// [`alloc::alloc`]: crate::alloc::alloc
548    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
549    ///
550    /// # Examples
551    ///
552    /// ```
553    /// use std::ptr;
554    /// use std::mem;
555    ///
556    /// let v = vec![1, 2, 3];
557    ///
558    // FIXME Update this when vec_into_raw_parts is stabilized
559    /// // Prevent running `v`'s destructor so we are in complete control
560    /// // of the allocation.
561    /// let mut v = mem::ManuallyDrop::new(v);
562    ///
563    /// // Pull out the various important pieces of information about `v`
564    /// let p = v.as_mut_ptr();
565    /// let len = v.len();
566    /// let cap = v.capacity();
567    ///
568    /// unsafe {
569    ///     // Overwrite memory with 4, 5, 6
570    ///     for i in 0..len {
571    ///         ptr::write(p.add(i), 4 + i);
572    ///     }
573    ///
574    ///     // Put everything back together into a Vec
575    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
576    ///     assert_eq!(rebuilt, [4, 5, 6]);
577    /// }
578    /// ```
579    ///
580    /// Using memory that was allocated elsewhere:
581    ///
582    /// ```rust
583    /// use std::alloc::{alloc, Layout};
584    ///
585    /// fn main() {
586    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
587    ///
588    ///     let vec = unsafe {
589    ///         let mem = alloc(layout).cast::<u32>();
590    ///         if mem.is_null() {
591    ///             return;
592    ///         }
593    ///
594    ///         mem.write(1_000_000);
595    ///
596    ///         Vec::from_raw_parts(mem, 1, 16)
597    ///     };
598    ///
599    ///     assert_eq!(vec, &[1_000_000]);
600    ///     assert_eq!(vec.capacity(), 16);
601    /// }
602    /// ```
603    #[inline]
604    #[stable(feature = "rust1", since = "1.0.0")]
605    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
606        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
607    }
608
609    #[doc(alias = "from_non_null_parts")]
610    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
611    ///
612    /// # Safety
613    ///
614    /// This is highly unsafe, due to the number of invariants that aren't
615    /// checked:
616    ///
617    /// * `ptr` must have been allocated using the global allocator, such as via
618    ///   the [`alloc::alloc`] function.
619    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
620    ///   (`T` having a less strict alignment is not sufficient, the alignment really
621    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
622    ///   allocated and deallocated with the same layout.)
623    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
624    ///   to be the same size as the pointer was allocated with. (Because similar to
625    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
626    /// * `length` needs to be less than or equal to `capacity`.
627    /// * The first `length` values must be properly initialized values of type `T`.
628    /// * `capacity` needs to be the capacity that the pointer was allocated with.
629    /// * The allocated size in bytes must be no larger than `isize::MAX`.
630    ///   See the safety documentation of [`pointer::offset`].
631    ///
632    /// These requirements are always upheld by any `ptr` that has been allocated
633    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
634    /// upheld.
635    ///
636    /// Violating these may cause problems like corrupting the allocator's
637    /// internal data structures. For example it is normally **not** safe
638    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
639    /// `size_t`, doing so is only safe if the array was initially allocated by
640    /// a `Vec` or `String`.
641    /// It's also not safe to build one from a `Vec<u16>` and its length, because
642    /// the allocator cares about the alignment, and these two types have different
643    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
644    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
645    /// these issues, it is often preferable to do casting/transmuting using
646    /// [`NonNull::slice_from_raw_parts`] instead.
647    ///
648    /// The ownership of `ptr` is effectively transferred to the
649    /// `Vec<T>` which may then deallocate, reallocate or change the
650    /// contents of memory pointed to by the pointer at will. Ensure
651    /// that nothing else uses the pointer after calling this
652    /// function.
653    ///
654    /// [`String`]: crate::string::String
655    /// [`alloc::alloc`]: crate::alloc::alloc
656    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
657    ///
658    /// # Examples
659    ///
660    /// ```
661    /// #![feature(box_vec_non_null)]
662    ///
663    /// use std::ptr::NonNull;
664    /// use std::mem;
665    ///
666    /// let v = vec![1, 2, 3];
667    ///
668    // FIXME Update this when vec_into_raw_parts is stabilized
669    /// // Prevent running `v`'s destructor so we are in complete control
670    /// // of the allocation.
671    /// let mut v = mem::ManuallyDrop::new(v);
672    ///
673    /// // Pull out the various important pieces of information about `v`
674    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
675    /// let len = v.len();
676    /// let cap = v.capacity();
677    ///
678    /// unsafe {
679    ///     // Overwrite memory with 4, 5, 6
680    ///     for i in 0..len {
681    ///         p.add(i).write(4 + i);
682    ///     }
683    ///
684    ///     // Put everything back together into a Vec
685    ///     let rebuilt = Vec::from_parts(p, len, cap);
686    ///     assert_eq!(rebuilt, [4, 5, 6]);
687    /// }
688    /// ```
689    ///
690    /// Using memory that was allocated elsewhere:
691    ///
692    /// ```rust
693    /// #![feature(box_vec_non_null)]
694    ///
695    /// use std::alloc::{alloc, Layout};
696    /// use std::ptr::NonNull;
697    ///
698    /// fn main() {
699    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
700    ///
701    ///     let vec = unsafe {
702    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
703    ///             return;
704    ///         };
705    ///
706    ///         mem.write(1_000_000);
707    ///
708    ///         Vec::from_parts(mem, 1, 16)
709    ///     };
710    ///
711    ///     assert_eq!(vec, &[1_000_000]);
712    ///     assert_eq!(vec.capacity(), 16);
713    /// }
714    /// ```
715    #[inline]
716    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
717    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
718        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
719    }
720}
721
722impl<T, A: Allocator> Vec<T, A> {
723    /// Constructs a new, empty `Vec<T, A>`.
724    ///
725    /// The vector will not allocate until elements are pushed onto it.
726    ///
727    /// # Examples
728    ///
729    /// ```
730    /// #![feature(allocator_api)]
731    ///
732    /// use std::alloc::System;
733    ///
734    /// # #[allow(unused_mut)]
735    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
736    /// ```
737    #[inline]
738    #[unstable(feature = "allocator_api", issue = "32838")]
739    pub const fn new_in(alloc: A) -> Self {
740        Vec { buf: RawVec::new_in(alloc), len: 0 }
741    }
742
743    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
744    /// with the provided allocator.
745    ///
746    /// The vector will be able to hold at least `capacity` elements without
747    /// reallocating. This method is allowed to allocate for more elements than
748    /// `capacity`. If `capacity` is zero, the vector will not allocate.
749    ///
750    /// It is important to note that although the returned vector has the
751    /// minimum *capacity* specified, the vector will have a zero *length*. For
752    /// an explanation of the difference between length and capacity, see
753    /// *[Capacity and reallocation]*.
754    ///
755    /// If it is important to know the exact allocated capacity of a `Vec`,
756    /// always use the [`capacity`] method after construction.
757    ///
758    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
759    /// and the capacity will always be `usize::MAX`.
760    ///
761    /// [Capacity and reallocation]: #capacity-and-reallocation
762    /// [`capacity`]: Vec::capacity
763    ///
764    /// # Panics
765    ///
766    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
767    ///
768    /// # Examples
769    ///
770    /// ```
771    /// #![feature(allocator_api)]
772    ///
773    /// use std::alloc::System;
774    ///
775    /// let mut vec = Vec::with_capacity_in(10, System);
776    ///
777    /// // The vector contains no items, even though it has capacity for more
778    /// assert_eq!(vec.len(), 0);
779    /// assert!(vec.capacity() >= 10);
780    ///
781    /// // These are all done without reallocating...
782    /// for i in 0..10 {
783    ///     vec.push(i);
784    /// }
785    /// assert_eq!(vec.len(), 10);
786    /// assert!(vec.capacity() >= 10);
787    ///
788    /// // ...but this may make the vector reallocate
789    /// vec.push(11);
790    /// assert_eq!(vec.len(), 11);
791    /// assert!(vec.capacity() >= 11);
792    ///
793    /// // A vector of a zero-sized type will always over-allocate, since no
794    /// // allocation is necessary
795    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
796    /// assert_eq!(vec_units.capacity(), usize::MAX);
797    /// ```
798    #[cfg(not(no_global_oom_handling))]
799    #[inline]
800    #[unstable(feature = "allocator_api", issue = "32838")]
801    #[track_caller]
802    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
803        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
804    }
805
806    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
807    /// with the provided allocator.
808    ///
809    /// The vector will be able to hold at least `capacity` elements without
810    /// reallocating. This method is allowed to allocate for more elements than
811    /// `capacity`. If `capacity` is zero, the vector will not allocate.
812    ///
813    /// # Errors
814    ///
815    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
816    /// or if the allocator reports allocation failure.
817    #[inline]
818    #[unstable(feature = "allocator_api", issue = "32838")]
819    // #[unstable(feature = "try_with_capacity", issue = "91913")]
820    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
821        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
822    }
823
824    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
825    /// and an allocator.
826    ///
827    /// # Safety
828    ///
829    /// This is highly unsafe, due to the number of invariants that aren't
830    /// checked:
831    ///
832    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
833    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
834    ///   (`T` having a less strict alignment is not sufficient, the alignment really
835    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
836    ///   allocated and deallocated with the same layout.)
837    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
838    ///   to be the same size as the pointer was allocated with. (Because similar to
839    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
840    /// * `length` needs to be less than or equal to `capacity`.
841    /// * The first `length` values must be properly initialized values of type `T`.
842    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
843    /// * The allocated size in bytes must be no larger than `isize::MAX`.
844    ///   See the safety documentation of [`pointer::offset`].
845    ///
846    /// These requirements are always upheld by any `ptr` that has been allocated
847    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
848    /// upheld.
849    ///
850    /// Violating these may cause problems like corrupting the allocator's
851    /// internal data structures. For example it is **not** safe
852    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
853    /// It's also not safe to build one from a `Vec<u16>` and its length, because
854    /// the allocator cares about the alignment, and these two types have different
855    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
856    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
857    ///
858    /// The ownership of `ptr` is effectively transferred to the
859    /// `Vec<T>` which may then deallocate, reallocate or change the
860    /// contents of memory pointed to by the pointer at will. Ensure
861    /// that nothing else uses the pointer after calling this
862    /// function.
863    ///
864    /// [`String`]: crate::string::String
865    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
866    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
867    /// [*fit*]: crate::alloc::Allocator#memory-fitting
868    ///
869    /// # Examples
870    ///
871    /// ```
872    /// #![feature(allocator_api)]
873    ///
874    /// use std::alloc::System;
875    ///
876    /// use std::ptr;
877    /// use std::mem;
878    ///
879    /// let mut v = Vec::with_capacity_in(3, System);
880    /// v.push(1);
881    /// v.push(2);
882    /// v.push(3);
883    ///
884    // FIXME Update this when vec_into_raw_parts is stabilized
885    /// // Prevent running `v`'s destructor so we are in complete control
886    /// // of the allocation.
887    /// let mut v = mem::ManuallyDrop::new(v);
888    ///
889    /// // Pull out the various important pieces of information about `v`
890    /// let p = v.as_mut_ptr();
891    /// let len = v.len();
892    /// let cap = v.capacity();
893    /// let alloc = v.allocator();
894    ///
895    /// unsafe {
896    ///     // Overwrite memory with 4, 5, 6
897    ///     for i in 0..len {
898    ///         ptr::write(p.add(i), 4 + i);
899    ///     }
900    ///
901    ///     // Put everything back together into a Vec
902    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
903    ///     assert_eq!(rebuilt, [4, 5, 6]);
904    /// }
905    /// ```
906    ///
907    /// Using memory that was allocated elsewhere:
908    ///
909    /// ```rust
910    /// #![feature(allocator_api)]
911    ///
912    /// use std::alloc::{AllocError, Allocator, Global, Layout};
913    ///
914    /// fn main() {
915    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
916    ///
917    ///     let vec = unsafe {
918    ///         let mem = match Global.allocate(layout) {
919    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
920    ///             Err(AllocError) => return,
921    ///         };
922    ///
923    ///         mem.write(1_000_000);
924    ///
925    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
926    ///     };
927    ///
928    ///     assert_eq!(vec, &[1_000_000]);
929    ///     assert_eq!(vec.capacity(), 16);
930    /// }
931    /// ```
932    #[inline]
933    #[unstable(feature = "allocator_api", issue = "32838")]
934    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
935        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
936    }
937
938    #[doc(alias = "from_non_null_parts_in")]
939    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
940    /// and an allocator.
941    ///
942    /// # Safety
943    ///
944    /// This is highly unsafe, due to the number of invariants that aren't
945    /// checked:
946    ///
947    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
948    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
949    ///   (`T` having a less strict alignment is not sufficient, the alignment really
950    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
951    ///   allocated and deallocated with the same layout.)
952    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
953    ///   to be the same size as the pointer was allocated with. (Because similar to
954    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
955    /// * `length` needs to be less than or equal to `capacity`.
956    /// * The first `length` values must be properly initialized values of type `T`.
957    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
958    /// * The allocated size in bytes must be no larger than `isize::MAX`.
959    ///   See the safety documentation of [`pointer::offset`].
960    ///
961    /// These requirements are always upheld by any `ptr` that has been allocated
962    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
963    /// upheld.
964    ///
965    /// Violating these may cause problems like corrupting the allocator's
966    /// internal data structures. For example it is **not** safe
967    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
968    /// It's also not safe to build one from a `Vec<u16>` and its length, because
969    /// the allocator cares about the alignment, and these two types have different
970    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
971    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
972    ///
973    /// The ownership of `ptr` is effectively transferred to the
974    /// `Vec<T>` which may then deallocate, reallocate or change the
975    /// contents of memory pointed to by the pointer at will. Ensure
976    /// that nothing else uses the pointer after calling this
977    /// function.
978    ///
979    /// [`String`]: crate::string::String
980    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
981    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
982    /// [*fit*]: crate::alloc::Allocator#memory-fitting
983    ///
984    /// # Examples
985    ///
986    /// ```
987    /// #![feature(allocator_api, box_vec_non_null)]
988    ///
989    /// use std::alloc::System;
990    ///
991    /// use std::ptr::NonNull;
992    /// use std::mem;
993    ///
994    /// let mut v = Vec::with_capacity_in(3, System);
995    /// v.push(1);
996    /// v.push(2);
997    /// v.push(3);
998    ///
999    // FIXME Update this when vec_into_raw_parts is stabilized
1000    /// // Prevent running `v`'s destructor so we are in complete control
1001    /// // of the allocation.
1002    /// let mut v = mem::ManuallyDrop::new(v);
1003    ///
1004    /// // Pull out the various important pieces of information about `v`
1005    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
1006    /// let len = v.len();
1007    /// let cap = v.capacity();
1008    /// let alloc = v.allocator();
1009    ///
1010    /// unsafe {
1011    ///     // Overwrite memory with 4, 5, 6
1012    ///     for i in 0..len {
1013    ///         p.add(i).write(4 + i);
1014    ///     }
1015    ///
1016    ///     // Put everything back together into a Vec
1017    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1018    ///     assert_eq!(rebuilt, [4, 5, 6]);
1019    /// }
1020    /// ```
1021    ///
1022    /// Using memory that was allocated elsewhere:
1023    ///
1024    /// ```rust
1025    /// #![feature(allocator_api, box_vec_non_null)]
1026    ///
1027    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1028    ///
1029    /// fn main() {
1030    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1031    ///
1032    ///     let vec = unsafe {
1033    ///         let mem = match Global.allocate(layout) {
1034    ///             Ok(mem) => mem.cast::<u32>(),
1035    ///             Err(AllocError) => return,
1036    ///         };
1037    ///
1038    ///         mem.write(1_000_000);
1039    ///
1040    ///         Vec::from_parts_in(mem, 1, 16, Global)
1041    ///     };
1042    ///
1043    ///     assert_eq!(vec, &[1_000_000]);
1044    ///     assert_eq!(vec.capacity(), 16);
1045    /// }
1046    /// ```
1047    #[inline]
1048    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1049    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1050    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1051        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1052    }
1053
1054    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
1055    ///
1056    /// Returns the raw pointer to the underlying data, the length of
1057    /// the vector (in elements), and the allocated capacity of the
1058    /// data (in elements). These are the same arguments in the same
1059    /// order as the arguments to [`from_raw_parts`].
1060    ///
1061    /// After calling this function, the caller is responsible for the
1062    /// memory previously managed by the `Vec`. The only way to do
1063    /// this is to convert the raw pointer, length, and capacity back
1064    /// into a `Vec` with the [`from_raw_parts`] function, allowing
1065    /// the destructor to perform the cleanup.
1066    ///
1067    /// [`from_raw_parts`]: Vec::from_raw_parts
1068    ///
1069    /// # Examples
1070    ///
1071    /// ```
1072    /// #![feature(vec_into_raw_parts)]
1073    /// let v: Vec<i32> = vec![-1, 0, 1];
1074    ///
1075    /// let (ptr, len, cap) = v.into_raw_parts();
1076    ///
1077    /// let rebuilt = unsafe {
1078    ///     // We can now make changes to the components, such as
1079    ///     // transmuting the raw pointer to a compatible type.
1080    ///     let ptr = ptr as *mut u32;
1081    ///
1082    ///     Vec::from_raw_parts(ptr, len, cap)
1083    /// };
1084    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1085    /// ```
1086    #[must_use = "losing the pointer will leak memory"]
1087    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1088    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
1089        let mut me = ManuallyDrop::new(self);
1090        (me.as_mut_ptr(), me.len(), me.capacity())
1091    }
1092
1093    #[doc(alias = "into_non_null_parts")]
1094    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
1095    ///
1096    /// Returns the `NonNull` pointer to the underlying data, the length of
1097    /// the vector (in elements), and the allocated capacity of the
1098    /// data (in elements). These are the same arguments in the same
1099    /// order as the arguments to [`from_parts`].
1100    ///
1101    /// After calling this function, the caller is responsible for the
1102    /// memory previously managed by the `Vec`. The only way to do
1103    /// this is to convert the `NonNull` pointer, length, and capacity back
1104    /// into a `Vec` with the [`from_parts`] function, allowing
1105    /// the destructor to perform the cleanup.
1106    ///
1107    /// [`from_parts`]: Vec::from_parts
1108    ///
1109    /// # Examples
1110    ///
1111    /// ```
1112    /// #![feature(vec_into_raw_parts, box_vec_non_null)]
1113    ///
1114    /// let v: Vec<i32> = vec![-1, 0, 1];
1115    ///
1116    /// let (ptr, len, cap) = v.into_parts();
1117    ///
1118    /// let rebuilt = unsafe {
1119    ///     // We can now make changes to the components, such as
1120    ///     // transmuting the raw pointer to a compatible type.
1121    ///     let ptr = ptr.cast::<u32>();
1122    ///
1123    ///     Vec::from_parts(ptr, len, cap)
1124    /// };
1125    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1126    /// ```
1127    #[must_use = "losing the pointer will leak memory"]
1128    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1129    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1130    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
1131        let (ptr, len, capacity) = self.into_raw_parts();
1132        // SAFETY: A `Vec` always has a non-null pointer.
1133        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
1134    }
1135
1136    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1137    ///
1138    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1139    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1140    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1141    ///
1142    /// After calling this function, the caller is responsible for the
1143    /// memory previously managed by the `Vec`. The only way to do
1144    /// this is to convert the raw pointer, length, and capacity back
1145    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1146    /// the destructor to perform the cleanup.
1147    ///
1148    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1149    ///
1150    /// # Examples
1151    ///
1152    /// ```
1153    /// #![feature(allocator_api, vec_into_raw_parts)]
1154    ///
1155    /// use std::alloc::System;
1156    ///
1157    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1158    /// v.push(-1);
1159    /// v.push(0);
1160    /// v.push(1);
1161    ///
1162    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1163    ///
1164    /// let rebuilt = unsafe {
1165    ///     // We can now make changes to the components, such as
1166    ///     // transmuting the raw pointer to a compatible type.
1167    ///     let ptr = ptr as *mut u32;
1168    ///
1169    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1170    /// };
1171    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1172    /// ```
1173    #[must_use = "losing the pointer will leak memory"]
1174    #[unstable(feature = "allocator_api", issue = "32838")]
1175    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1176    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1177        let mut me = ManuallyDrop::new(self);
1178        let len = me.len();
1179        let capacity = me.capacity();
1180        let ptr = me.as_mut_ptr();
1181        let alloc = unsafe { ptr::read(me.allocator()) };
1182        (ptr, len, capacity, alloc)
1183    }
1184
1185    #[doc(alias = "into_non_null_parts_with_alloc")]
1186    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1187    ///
1188    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1189    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1190    /// arguments in the same order as the arguments to [`from_parts_in`].
1191    ///
1192    /// After calling this function, the caller is responsible for the
1193    /// memory previously managed by the `Vec`. The only way to do
1194    /// this is to convert the `NonNull` pointer, length, and capacity back
1195    /// into a `Vec` with the [`from_parts_in`] function, allowing
1196    /// the destructor to perform the cleanup.
1197    ///
1198    /// [`from_parts_in`]: Vec::from_parts_in
1199    ///
1200    /// # Examples
1201    ///
1202    /// ```
1203    /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
1204    ///
1205    /// use std::alloc::System;
1206    ///
1207    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1208    /// v.push(-1);
1209    /// v.push(0);
1210    /// v.push(1);
1211    ///
1212    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1213    ///
1214    /// let rebuilt = unsafe {
1215    ///     // We can now make changes to the components, such as
1216    ///     // transmuting the raw pointer to a compatible type.
1217    ///     let ptr = ptr.cast::<u32>();
1218    ///
1219    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1220    /// };
1221    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1222    /// ```
1223    #[must_use = "losing the pointer will leak memory"]
1224    #[unstable(feature = "allocator_api", issue = "32838")]
1225    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1226    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1227    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1228        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1229        // SAFETY: A `Vec` always has a non-null pointer.
1230        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1231    }
1232
1233    /// Returns the total number of elements the vector can hold without
1234    /// reallocating.
1235    ///
1236    /// # Examples
1237    ///
1238    /// ```
1239    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1240    /// vec.push(42);
1241    /// assert!(vec.capacity() >= 10);
1242    /// ```
1243    #[inline]
1244    #[stable(feature = "rust1", since = "1.0.0")]
1245    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1246    pub const fn capacity(&self) -> usize {
1247        self.buf.capacity()
1248    }
1249
1250    /// Reserves capacity for at least `additional` more elements to be inserted
1251    /// in the given `Vec<T>`. The collection may reserve more space to
1252    /// speculatively avoid frequent reallocations. After calling `reserve`,
1253    /// capacity will be greater than or equal to `self.len() + additional`.
1254    /// Does nothing if capacity is already sufficient.
1255    ///
1256    /// # Panics
1257    ///
1258    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1259    ///
1260    /// # Examples
1261    ///
1262    /// ```
1263    /// let mut vec = vec![1];
1264    /// vec.reserve(10);
1265    /// assert!(vec.capacity() >= 11);
1266    /// ```
1267    #[cfg(not(no_global_oom_handling))]
1268    #[stable(feature = "rust1", since = "1.0.0")]
1269    #[track_caller]
1270    #[cfg_attr(not(test), rustc_diagnostic_item = "vec_reserve")]
1271    pub fn reserve(&mut self, additional: usize) {
1272        self.buf.reserve(self.len, additional);
1273    }
1274
1275    /// Reserves the minimum capacity for at least `additional` more elements to
1276    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1277    /// deliberately over-allocate to speculatively avoid frequent allocations.
1278    /// After calling `reserve_exact`, capacity will be greater than or equal to
1279    /// `self.len() + additional`. Does nothing if the capacity is already
1280    /// sufficient.
1281    ///
1282    /// Note that the allocator may give the collection more space than it
1283    /// requests. Therefore, capacity can not be relied upon to be precisely
1284    /// minimal. Prefer [`reserve`] if future insertions are expected.
1285    ///
1286    /// [`reserve`]: Vec::reserve
1287    ///
1288    /// # Panics
1289    ///
1290    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1291    ///
1292    /// # Examples
1293    ///
1294    /// ```
1295    /// let mut vec = vec![1];
1296    /// vec.reserve_exact(10);
1297    /// assert!(vec.capacity() >= 11);
1298    /// ```
1299    #[cfg(not(no_global_oom_handling))]
1300    #[stable(feature = "rust1", since = "1.0.0")]
1301    #[track_caller]
1302    pub fn reserve_exact(&mut self, additional: usize) {
1303        self.buf.reserve_exact(self.len, additional);
1304    }
1305
1306    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1307    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1308    /// frequent reallocations. After calling `try_reserve`, capacity will be
1309    /// greater than or equal to `self.len() + additional` if it returns
1310    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1311    /// preserves the contents even if an error occurs.
1312    ///
1313    /// # Errors
1314    ///
1315    /// If the capacity overflows, or the allocator reports a failure, then an error
1316    /// is returned.
1317    ///
1318    /// # Examples
1319    ///
1320    /// ```
1321    /// use std::collections::TryReserveError;
1322    ///
1323    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1324    ///     let mut output = Vec::new();
1325    ///
1326    ///     // Pre-reserve the memory, exiting if we can't
1327    ///     output.try_reserve(data.len())?;
1328    ///
1329    ///     // Now we know this can't OOM in the middle of our complex work
1330    ///     output.extend(data.iter().map(|&val| {
1331    ///         val * 2 + 5 // very complicated
1332    ///     }));
1333    ///
1334    ///     Ok(output)
1335    /// }
1336    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1337    /// ```
1338    #[stable(feature = "try_reserve", since = "1.57.0")]
1339    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1340        self.buf.try_reserve(self.len, additional)
1341    }
1342
1343    /// Tries to reserve the minimum capacity for at least `additional`
1344    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1345    /// this will not deliberately over-allocate to speculatively avoid frequent
1346    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1347    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1348    /// Does nothing if the capacity is already sufficient.
1349    ///
1350    /// Note that the allocator may give the collection more space than it
1351    /// requests. Therefore, capacity can not be relied upon to be precisely
1352    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1353    ///
1354    /// [`try_reserve`]: Vec::try_reserve
1355    ///
1356    /// # Errors
1357    ///
1358    /// If the capacity overflows, or the allocator reports a failure, then an error
1359    /// is returned.
1360    ///
1361    /// # Examples
1362    ///
1363    /// ```
1364    /// use std::collections::TryReserveError;
1365    ///
1366    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1367    ///     let mut output = Vec::new();
1368    ///
1369    ///     // Pre-reserve the memory, exiting if we can't
1370    ///     output.try_reserve_exact(data.len())?;
1371    ///
1372    ///     // Now we know this can't OOM in the middle of our complex work
1373    ///     output.extend(data.iter().map(|&val| {
1374    ///         val * 2 + 5 // very complicated
1375    ///     }));
1376    ///
1377    ///     Ok(output)
1378    /// }
1379    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1380    /// ```
1381    #[stable(feature = "try_reserve", since = "1.57.0")]
1382    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1383        self.buf.try_reserve_exact(self.len, additional)
1384    }
1385
1386    /// Shrinks the capacity of the vector as much as possible.
1387    ///
1388    /// The behavior of this method depends on the allocator, which may either shrink the vector
1389    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1390    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1391    ///
1392    /// [`with_capacity`]: Vec::with_capacity
1393    ///
1394    /// # Examples
1395    ///
1396    /// ```
1397    /// let mut vec = Vec::with_capacity(10);
1398    /// vec.extend([1, 2, 3]);
1399    /// assert!(vec.capacity() >= 10);
1400    /// vec.shrink_to_fit();
1401    /// assert!(vec.capacity() >= 3);
1402    /// ```
1403    #[cfg(not(no_global_oom_handling))]
1404    #[stable(feature = "rust1", since = "1.0.0")]
1405    #[track_caller]
1406    #[inline]
1407    pub fn shrink_to_fit(&mut self) {
1408        // The capacity is never less than the length, and there's nothing to do when
1409        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1410        // by only calling it with a greater capacity.
1411        if self.capacity() > self.len {
1412            self.buf.shrink_to_fit(self.len);
1413        }
1414    }
1415
1416    /// Shrinks the capacity of the vector with a lower bound.
1417    ///
1418    /// The capacity will remain at least as large as both the length
1419    /// and the supplied value.
1420    ///
1421    /// If the current capacity is less than the lower limit, this is a no-op.
1422    ///
1423    /// # Examples
1424    ///
1425    /// ```
1426    /// let mut vec = Vec::with_capacity(10);
1427    /// vec.extend([1, 2, 3]);
1428    /// assert!(vec.capacity() >= 10);
1429    /// vec.shrink_to(4);
1430    /// assert!(vec.capacity() >= 4);
1431    /// vec.shrink_to(0);
1432    /// assert!(vec.capacity() >= 3);
1433    /// ```
1434    #[cfg(not(no_global_oom_handling))]
1435    #[stable(feature = "shrink_to", since = "1.56.0")]
1436    #[track_caller]
1437    pub fn shrink_to(&mut self, min_capacity: usize) {
1438        if self.capacity() > min_capacity {
1439            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1440        }
1441    }
1442
1443    /// Converts the vector into [`Box<[T]>`][owned slice].
1444    ///
1445    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1446    ///
1447    /// [owned slice]: Box
1448    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1449    ///
1450    /// # Examples
1451    ///
1452    /// ```
1453    /// let v = vec![1, 2, 3];
1454    ///
1455    /// let slice = v.into_boxed_slice();
1456    /// ```
1457    ///
1458    /// Any excess capacity is removed:
1459    ///
1460    /// ```
1461    /// let mut vec = Vec::with_capacity(10);
1462    /// vec.extend([1, 2, 3]);
1463    ///
1464    /// assert!(vec.capacity() >= 10);
1465    /// let slice = vec.into_boxed_slice();
1466    /// assert_eq!(slice.into_vec().capacity(), 3);
1467    /// ```
1468    #[cfg(not(no_global_oom_handling))]
1469    #[stable(feature = "rust1", since = "1.0.0")]
1470    #[track_caller]
1471    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1472        unsafe {
1473            self.shrink_to_fit();
1474            let me = ManuallyDrop::new(self);
1475            let buf = ptr::read(&me.buf);
1476            let len = me.len();
1477            buf.into_box(len).assume_init()
1478        }
1479    }
1480
1481    /// Shortens the vector, keeping the first `len` elements and dropping
1482    /// the rest.
1483    ///
1484    /// If `len` is greater or equal to the vector's current length, this has
1485    /// no effect.
1486    ///
1487    /// The [`drain`] method can emulate `truncate`, but causes the excess
1488    /// elements to be returned instead of dropped.
1489    ///
1490    /// Note that this method has no effect on the allocated capacity
1491    /// of the vector.
1492    ///
1493    /// # Examples
1494    ///
1495    /// Truncating a five element vector to two elements:
1496    ///
1497    /// ```
1498    /// let mut vec = vec![1, 2, 3, 4, 5];
1499    /// vec.truncate(2);
1500    /// assert_eq!(vec, [1, 2]);
1501    /// ```
1502    ///
1503    /// No truncation occurs when `len` is greater than the vector's current
1504    /// length:
1505    ///
1506    /// ```
1507    /// let mut vec = vec![1, 2, 3];
1508    /// vec.truncate(8);
1509    /// assert_eq!(vec, [1, 2, 3]);
1510    /// ```
1511    ///
1512    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1513    /// method.
1514    ///
1515    /// ```
1516    /// let mut vec = vec![1, 2, 3];
1517    /// vec.truncate(0);
1518    /// assert_eq!(vec, []);
1519    /// ```
1520    ///
1521    /// [`clear`]: Vec::clear
1522    /// [`drain`]: Vec::drain
1523    #[stable(feature = "rust1", since = "1.0.0")]
1524    pub fn truncate(&mut self, len: usize) {
1525        // This is safe because:
1526        //
1527        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1528        //   case avoids creating an invalid slice, and
1529        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1530        //   such that no value will be dropped twice in case `drop_in_place`
1531        //   were to panic once (if it panics twice, the program aborts).
1532        unsafe {
1533            // Note: It's intentional that this is `>` and not `>=`.
1534            //       Changing it to `>=` has negative performance
1535            //       implications in some cases. See #78884 for more.
1536            if len > self.len {
1537                return;
1538            }
1539            let remaining_len = self.len - len;
1540            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1541            self.len = len;
1542            ptr::drop_in_place(s);
1543        }
1544    }
1545
1546    /// Extracts a slice containing the entire vector.
1547    ///
1548    /// Equivalent to `&s[..]`.
1549    ///
1550    /// # Examples
1551    ///
1552    /// ```
1553    /// use std::io::{self, Write};
1554    /// let buffer = vec![1, 2, 3, 5, 8];
1555    /// io::sink().write(buffer.as_slice()).unwrap();
1556    /// ```
1557    #[inline]
1558    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1559    #[cfg_attr(not(test), rustc_diagnostic_item = "vec_as_slice")]
1560    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1561    pub const fn as_slice(&self) -> &[T] {
1562        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1563        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1564        // lifetime. Further, `len * mem::size_of::<T>` <= `ISIZE::MAX`, and allocation does not
1565        // "wrap" through overflowing memory addresses.
1566        //
1567        // * Vec API guarantees that self.buf:
1568        //      * contains only properly-initialized items within 0..len
1569        //      * is aligned, contiguous, and valid for `len` reads
1570        //      * obeys size and address-wrapping constraints
1571        //
1572        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1573        //   check ensures that it is not possible to mutably alias `self.buf` within the
1574        //   returned lifetime.
1575        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1576    }
1577
1578    /// Extracts a mutable slice of the entire vector.
1579    ///
1580    /// Equivalent to `&mut s[..]`.
1581    ///
1582    /// # Examples
1583    ///
1584    /// ```
1585    /// use std::io::{self, Read};
1586    /// let mut buffer = vec![0; 3];
1587    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1588    /// ```
1589    #[inline]
1590    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1591    #[cfg_attr(not(test), rustc_diagnostic_item = "vec_as_mut_slice")]
1592    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1593    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1594        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1595        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1596        // other pointer for the returned lifetime. Further, `len * mem::size_of::<T>` <=
1597        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1598        //
1599        // * Vec API guarantees that self.buf:
1600        //      * contains only properly-initialized items within 0..len
1601        //      * is aligned, contiguous, and valid for `len` reads
1602        //      * obeys size and address-wrapping constraints
1603        //
1604        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1605        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1606        //   within the returned lifetime.
1607        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1608    }
1609
1610    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1611    /// valid for zero sized reads if the vector didn't allocate.
1612    ///
1613    /// The caller must ensure that the vector outlives the pointer this
1614    /// function returns, or else it will end up dangling.
1615    /// Modifying the vector may cause its buffer to be reallocated,
1616    /// which would also make any pointers to it invalid.
1617    ///
1618    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1619    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1620    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1621    ///
1622    /// This method guarantees that for the purpose of the aliasing model, this method
1623    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1624    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1625    /// and [`as_non_null`].
1626    /// Note that calling other methods that materialize mutable references to the slice,
1627    /// or mutable references to specific elements you are planning on accessing through this pointer,
1628    /// as well as writing to those elements, may still invalidate this pointer.
1629    /// See the second example below for how this guarantee can be used.
1630    ///
1631    ///
1632    /// # Examples
1633    ///
1634    /// ```
1635    /// let x = vec![1, 2, 4];
1636    /// let x_ptr = x.as_ptr();
1637    ///
1638    /// unsafe {
1639    ///     for i in 0..x.len() {
1640    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1641    ///     }
1642    /// }
1643    /// ```
1644    ///
1645    /// Due to the aliasing guarantee, the following code is legal:
1646    ///
1647    /// ```rust
1648    /// unsafe {
1649    ///     let mut v = vec![0, 1, 2];
1650    ///     let ptr1 = v.as_ptr();
1651    ///     let _ = ptr1.read();
1652    ///     let ptr2 = v.as_mut_ptr().offset(2);
1653    ///     ptr2.write(2);
1654    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1655    ///     // because it mutated a different element:
1656    ///     let _ = ptr1.read();
1657    /// }
1658    /// ```
1659    ///
1660    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1661    /// [`as_ptr`]: Vec::as_ptr
1662    /// [`as_non_null`]: Vec::as_non_null
1663    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1664    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1665    #[rustc_never_returns_null_ptr]
1666    #[rustc_as_ptr]
1667    #[inline]
1668    pub const fn as_ptr(&self) -> *const T {
1669        // We shadow the slice method of the same name to avoid going through
1670        // `deref`, which creates an intermediate reference.
1671        self.buf.ptr()
1672    }
1673
1674    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1675    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1676    ///
1677    /// The caller must ensure that the vector outlives the pointer this
1678    /// function returns, or else it will end up dangling.
1679    /// Modifying the vector may cause its buffer to be reallocated,
1680    /// which would also make any pointers to it invalid.
1681    ///
1682    /// This method guarantees that for the purpose of the aliasing model, this method
1683    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1684    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1685    /// and [`as_non_null`].
1686    /// Note that calling other methods that materialize references to the slice,
1687    /// or references to specific elements you are planning on accessing through this pointer,
1688    /// may still invalidate this pointer.
1689    /// See the second example below for how this guarantee can be used.
1690    ///
1691    /// # Examples
1692    ///
1693    /// ```
1694    /// // Allocate vector big enough for 4 elements.
1695    /// let size = 4;
1696    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1697    /// let x_ptr = x.as_mut_ptr();
1698    ///
1699    /// // Initialize elements via raw pointer writes, then set length.
1700    /// unsafe {
1701    ///     for i in 0..size {
1702    ///         *x_ptr.add(i) = i as i32;
1703    ///     }
1704    ///     x.set_len(size);
1705    /// }
1706    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1707    /// ```
1708    ///
1709    /// Due to the aliasing guarantee, the following code is legal:
1710    ///
1711    /// ```rust
1712    /// unsafe {
1713    ///     let mut v = vec![0];
1714    ///     let ptr1 = v.as_mut_ptr();
1715    ///     ptr1.write(1);
1716    ///     let ptr2 = v.as_mut_ptr();
1717    ///     ptr2.write(2);
1718    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1719    ///     ptr1.write(3);
1720    /// }
1721    /// ```
1722    ///
1723    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1724    /// [`as_ptr`]: Vec::as_ptr
1725    /// [`as_non_null`]: Vec::as_non_null
1726    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1727    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1728    #[rustc_never_returns_null_ptr]
1729    #[rustc_as_ptr]
1730    #[inline]
1731    pub const fn as_mut_ptr(&mut self) -> *mut T {
1732        // We shadow the slice method of the same name to avoid going through
1733        // `deref_mut`, which creates an intermediate reference.
1734        self.buf.ptr()
1735    }
1736
1737    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1738    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1739    ///
1740    /// The caller must ensure that the vector outlives the pointer this
1741    /// function returns, or else it will end up dangling.
1742    /// Modifying the vector may cause its buffer to be reallocated,
1743    /// which would also make any pointers to it invalid.
1744    ///
1745    /// This method guarantees that for the purpose of the aliasing model, this method
1746    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1747    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1748    /// and [`as_non_null`].
1749    /// Note that calling other methods that materialize references to the slice,
1750    /// or references to specific elements you are planning on accessing through this pointer,
1751    /// may still invalidate this pointer.
1752    /// See the second example below for how this guarantee can be used.
1753    ///
1754    /// # Examples
1755    ///
1756    /// ```
1757    /// #![feature(box_vec_non_null)]
1758    ///
1759    /// // Allocate vector big enough for 4 elements.
1760    /// let size = 4;
1761    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1762    /// let x_ptr = x.as_non_null();
1763    ///
1764    /// // Initialize elements via raw pointer writes, then set length.
1765    /// unsafe {
1766    ///     for i in 0..size {
1767    ///         x_ptr.add(i).write(i as i32);
1768    ///     }
1769    ///     x.set_len(size);
1770    /// }
1771    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1772    /// ```
1773    ///
1774    /// Due to the aliasing guarantee, the following code is legal:
1775    ///
1776    /// ```rust
1777    /// #![feature(box_vec_non_null)]
1778    ///
1779    /// unsafe {
1780    ///     let mut v = vec![0];
1781    ///     let ptr1 = v.as_non_null();
1782    ///     ptr1.write(1);
1783    ///     let ptr2 = v.as_non_null();
1784    ///     ptr2.write(2);
1785    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1786    ///     ptr1.write(3);
1787    /// }
1788    /// ```
1789    ///
1790    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1791    /// [`as_ptr`]: Vec::as_ptr
1792    /// [`as_non_null`]: Vec::as_non_null
1793    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1794    #[inline]
1795    pub fn as_non_null(&mut self) -> NonNull<T> {
1796        // SAFETY: A `Vec` always has a non-null pointer.
1797        unsafe { NonNull::new_unchecked(self.as_mut_ptr()) }
1798    }
1799
1800    /// Returns a reference to the underlying allocator.
1801    #[unstable(feature = "allocator_api", issue = "32838")]
1802    #[inline]
1803    pub fn allocator(&self) -> &A {
1804        self.buf.allocator()
1805    }
1806
1807    /// Forces the length of the vector to `new_len`.
1808    ///
1809    /// This is a low-level operation that maintains none of the normal
1810    /// invariants of the type. Normally changing the length of a vector
1811    /// is done using one of the safe operations instead, such as
1812    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1813    ///
1814    /// [`truncate`]: Vec::truncate
1815    /// [`resize`]: Vec::resize
1816    /// [`extend`]: Extend::extend
1817    /// [`clear`]: Vec::clear
1818    ///
1819    /// # Safety
1820    ///
1821    /// - `new_len` must be less than or equal to [`capacity()`].
1822    /// - The elements at `old_len..new_len` must be initialized.
1823    ///
1824    /// [`capacity()`]: Vec::capacity
1825    ///
1826    /// # Examples
1827    ///
1828    /// See [`spare_capacity_mut()`] for an example with safe
1829    /// initialization of capacity elements and use of this method.
1830    ///
1831    /// `set_len()` can be useful for situations in which the vector
1832    /// is serving as a buffer for other code, particularly over FFI:
1833    ///
1834    /// ```no_run
1835    /// # #![allow(dead_code)]
1836    /// # // This is just a minimal skeleton for the doc example;
1837    /// # // don't use this as a starting point for a real library.
1838    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1839    /// # const Z_OK: i32 = 0;
1840    /// # unsafe extern "C" {
1841    /// #     fn deflateGetDictionary(
1842    /// #         strm: *mut std::ffi::c_void,
1843    /// #         dictionary: *mut u8,
1844    /// #         dictLength: *mut usize,
1845    /// #     ) -> i32;
1846    /// # }
1847    /// # impl StreamWrapper {
1848    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1849    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1850    ///     let mut dict = Vec::with_capacity(32_768);
1851    ///     let mut dict_length = 0;
1852    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1853    ///     // 1. `dict_length` elements were initialized.
1854    ///     // 2. `dict_length` <= the capacity (32_768)
1855    ///     // which makes `set_len` safe to call.
1856    ///     unsafe {
1857    ///         // Make the FFI call...
1858    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1859    ///         if r == Z_OK {
1860    ///             // ...and update the length to what was initialized.
1861    ///             dict.set_len(dict_length);
1862    ///             Some(dict)
1863    ///         } else {
1864    ///             None
1865    ///         }
1866    ///     }
1867    /// }
1868    /// # }
1869    /// ```
1870    ///
1871    /// While the following example is sound, there is a memory leak since
1872    /// the inner vectors were not freed prior to the `set_len` call:
1873    ///
1874    /// ```
1875    /// let mut vec = vec![vec![1, 0, 0],
1876    ///                    vec![0, 1, 0],
1877    ///                    vec![0, 0, 1]];
1878    /// // SAFETY:
1879    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1880    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1881    /// unsafe {
1882    ///     vec.set_len(0);
1883    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1884    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1885    /// #   vec.set_len(3);
1886    /// }
1887    /// ```
1888    ///
1889    /// Normally, here, one would use [`clear`] instead to correctly drop
1890    /// the contents and thus not leak memory.
1891    ///
1892    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1893    #[inline]
1894    #[stable(feature = "rust1", since = "1.0.0")]
1895    pub unsafe fn set_len(&mut self, new_len: usize) {
1896        debug_assert!(new_len <= self.capacity());
1897
1898        self.len = new_len;
1899    }
1900
1901    /// Removes an element from the vector and returns it.
1902    ///
1903    /// The removed element is replaced by the last element of the vector.
1904    ///
1905    /// This does not preserve ordering of the remaining elements, but is *O*(1).
1906    /// If you need to preserve the element order, use [`remove`] instead.
1907    ///
1908    /// [`remove`]: Vec::remove
1909    ///
1910    /// # Panics
1911    ///
1912    /// Panics if `index` is out of bounds.
1913    ///
1914    /// # Examples
1915    ///
1916    /// ```
1917    /// let mut v = vec!["foo", "bar", "baz", "qux"];
1918    ///
1919    /// assert_eq!(v.swap_remove(1), "bar");
1920    /// assert_eq!(v, ["foo", "qux", "baz"]);
1921    ///
1922    /// assert_eq!(v.swap_remove(0), "foo");
1923    /// assert_eq!(v, ["baz", "qux"]);
1924    /// ```
1925    #[inline]
1926    #[stable(feature = "rust1", since = "1.0.0")]
1927    pub fn swap_remove(&mut self, index: usize) -> T {
1928        #[cold]
1929        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
1930        #[track_caller]
1931        #[optimize(size)]
1932        fn assert_failed(index: usize, len: usize) -> ! {
1933            panic!("swap_remove index (is {index}) should be < len (is {len})");
1934        }
1935
1936        let len = self.len();
1937        if index >= len {
1938            assert_failed(index, len);
1939        }
1940        unsafe {
1941            // We replace self[index] with the last element. Note that if the
1942            // bounds check above succeeds there must be a last element (which
1943            // can be self[index] itself).
1944            let value = ptr::read(self.as_ptr().add(index));
1945            let base_ptr = self.as_mut_ptr();
1946            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1947            self.set_len(len - 1);
1948            value
1949        }
1950    }
1951
1952    /// Inserts an element at position `index` within the vector, shifting all
1953    /// elements after it to the right.
1954    ///
1955    /// # Panics
1956    ///
1957    /// Panics if `index > len`.
1958    ///
1959    /// # Examples
1960    ///
1961    /// ```
1962    /// let mut vec = vec!['a', 'b', 'c'];
1963    /// vec.insert(1, 'd');
1964    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
1965    /// vec.insert(4, 'e');
1966    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
1967    /// ```
1968    ///
1969    /// # Time complexity
1970    ///
1971    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
1972    /// shifted to the right. In the worst case, all elements are shifted when
1973    /// the insertion index is 0.
1974    #[cfg(not(no_global_oom_handling))]
1975    #[stable(feature = "rust1", since = "1.0.0")]
1976    #[track_caller]
1977    pub fn insert(&mut self, index: usize, element: T) {
1978        #[cold]
1979        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
1980        #[track_caller]
1981        #[optimize(size)]
1982        fn assert_failed(index: usize, len: usize) -> ! {
1983            panic!("insertion index (is {index}) should be <= len (is {len})");
1984        }
1985
1986        let len = self.len();
1987        if index > len {
1988            assert_failed(index, len);
1989        }
1990
1991        // space for the new element
1992        if len == self.buf.capacity() {
1993            self.buf.grow_one();
1994        }
1995
1996        unsafe {
1997            // infallible
1998            // The spot to put the new value
1999            {
2000                let p = self.as_mut_ptr().add(index);
2001                if index < len {
2002                    // Shift everything over to make space. (Duplicating the
2003                    // `index`th element into two consecutive places.)
2004                    ptr::copy(p, p.add(1), len - index);
2005                }
2006                // Write it in, overwriting the first copy of the `index`th
2007                // element.
2008                ptr::write(p, element);
2009            }
2010            self.set_len(len + 1);
2011        }
2012    }
2013
2014    /// Removes and returns the element at position `index` within the vector,
2015    /// shifting all elements after it to the left.
2016    ///
2017    /// Note: Because this shifts over the remaining elements, it has a
2018    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2019    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2020    /// elements from the beginning of the `Vec`, consider using
2021    /// [`VecDeque::pop_front`] instead.
2022    ///
2023    /// [`swap_remove`]: Vec::swap_remove
2024    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2025    ///
2026    /// # Panics
2027    ///
2028    /// Panics if `index` is out of bounds.
2029    ///
2030    /// # Examples
2031    ///
2032    /// ```
2033    /// let mut v = vec!['a', 'b', 'c'];
2034    /// assert_eq!(v.remove(1), 'b');
2035    /// assert_eq!(v, ['a', 'c']);
2036    /// ```
2037    #[stable(feature = "rust1", since = "1.0.0")]
2038    #[track_caller]
2039    #[rustc_confusables("delete", "take")]
2040    pub fn remove(&mut self, index: usize) -> T {
2041        #[cold]
2042        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2043        #[track_caller]
2044        #[optimize(size)]
2045        fn assert_failed(index: usize, len: usize) -> ! {
2046            panic!("removal index (is {index}) should be < len (is {len})");
2047        }
2048
2049        let len = self.len();
2050        if index >= len {
2051            assert_failed(index, len);
2052        }
2053        unsafe {
2054            // infallible
2055            let ret;
2056            {
2057                // the place we are taking from.
2058                let ptr = self.as_mut_ptr().add(index);
2059                // copy it out, unsafely having a copy of the value on
2060                // the stack and in the vector at the same time.
2061                ret = ptr::read(ptr);
2062
2063                // Shift everything down to fill in that spot.
2064                ptr::copy(ptr.add(1), ptr, len - index - 1);
2065            }
2066            self.set_len(len - 1);
2067            ret
2068        }
2069    }
2070
2071    /// Retains only the elements specified by the predicate.
2072    ///
2073    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2074    /// This method operates in place, visiting each element exactly once in the
2075    /// original order, and preserves the order of the retained elements.
2076    ///
2077    /// # Examples
2078    ///
2079    /// ```
2080    /// let mut vec = vec![1, 2, 3, 4];
2081    /// vec.retain(|&x| x % 2 == 0);
2082    /// assert_eq!(vec, [2, 4]);
2083    /// ```
2084    ///
2085    /// Because the elements are visited exactly once in the original order,
2086    /// external state may be used to decide which elements to keep.
2087    ///
2088    /// ```
2089    /// let mut vec = vec![1, 2, 3, 4, 5];
2090    /// let keep = [false, true, true, false, true];
2091    /// let mut iter = keep.iter();
2092    /// vec.retain(|_| *iter.next().unwrap());
2093    /// assert_eq!(vec, [2, 3, 5]);
2094    /// ```
2095    #[stable(feature = "rust1", since = "1.0.0")]
2096    pub fn retain<F>(&mut self, mut f: F)
2097    where
2098        F: FnMut(&T) -> bool,
2099    {
2100        self.retain_mut(|elem| f(elem));
2101    }
2102
2103    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2104    ///
2105    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2106    /// This method operates in place, visiting each element exactly once in the
2107    /// original order, and preserves the order of the retained elements.
2108    ///
2109    /// # Examples
2110    ///
2111    /// ```
2112    /// let mut vec = vec![1, 2, 3, 4];
2113    /// vec.retain_mut(|x| if *x <= 3 {
2114    ///     *x += 1;
2115    ///     true
2116    /// } else {
2117    ///     false
2118    /// });
2119    /// assert_eq!(vec, [2, 3, 4]);
2120    /// ```
2121    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2122    pub fn retain_mut<F>(&mut self, mut f: F)
2123    where
2124        F: FnMut(&mut T) -> bool,
2125    {
2126        let original_len = self.len();
2127
2128        if original_len == 0 {
2129            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2130            return;
2131        }
2132
2133        // Avoid double drop if the drop guard is not executed,
2134        // since we may make some holes during the process.
2135        unsafe { self.set_len(0) };
2136
2137        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2138        //      |<-              processed len   ->| ^- next to check
2139        //                  |<-  deleted cnt     ->|
2140        //      |<-              original_len                          ->|
2141        // Kept: Elements which predicate returns true on.
2142        // Hole: Moved or dropped element slot.
2143        // Unchecked: Unchecked valid elements.
2144        //
2145        // This drop guard will be invoked when predicate or `drop` of element panicked.
2146        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2147        // In cases when predicate and `drop` never panick, it will be optimized out.
2148        struct BackshiftOnDrop<'a, T, A: Allocator> {
2149            v: &'a mut Vec<T, A>,
2150            processed_len: usize,
2151            deleted_cnt: usize,
2152            original_len: usize,
2153        }
2154
2155        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2156            fn drop(&mut self) {
2157                if self.deleted_cnt > 0 {
2158                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2159                    unsafe {
2160                        ptr::copy(
2161                            self.v.as_ptr().add(self.processed_len),
2162                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2163                            self.original_len - self.processed_len,
2164                        );
2165                    }
2166                }
2167                // SAFETY: After filling holes, all items are in contiguous memory.
2168                unsafe {
2169                    self.v.set_len(self.original_len - self.deleted_cnt);
2170                }
2171            }
2172        }
2173
2174        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2175
2176        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2177            original_len: usize,
2178            f: &mut F,
2179            g: &mut BackshiftOnDrop<'_, T, A>,
2180        ) where
2181            F: FnMut(&mut T) -> bool,
2182        {
2183            while g.processed_len != original_len {
2184                // SAFETY: Unchecked element must be valid.
2185                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2186                if !f(cur) {
2187                    // Advance early to avoid double drop if `drop_in_place` panicked.
2188                    g.processed_len += 1;
2189                    g.deleted_cnt += 1;
2190                    // SAFETY: We never touch this element again after dropped.
2191                    unsafe { ptr::drop_in_place(cur) };
2192                    // We already advanced the counter.
2193                    if DELETED {
2194                        continue;
2195                    } else {
2196                        break;
2197                    }
2198                }
2199                if DELETED {
2200                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2201                    // We use copy for move, and never touch this element again.
2202                    unsafe {
2203                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2204                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2205                    }
2206                }
2207                g.processed_len += 1;
2208            }
2209        }
2210
2211        // Stage 1: Nothing was deleted.
2212        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2213
2214        // Stage 2: Some elements were deleted.
2215        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2216
2217        // All item are processed. This can be optimized to `set_len` by LLVM.
2218        drop(g);
2219    }
2220
2221    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2222    /// key.
2223    ///
2224    /// If the vector is sorted, this removes all duplicates.
2225    ///
2226    /// # Examples
2227    ///
2228    /// ```
2229    /// let mut vec = vec![10, 20, 21, 30, 20];
2230    ///
2231    /// vec.dedup_by_key(|i| *i / 10);
2232    ///
2233    /// assert_eq!(vec, [10, 20, 30, 20]);
2234    /// ```
2235    #[stable(feature = "dedup_by", since = "1.16.0")]
2236    #[inline]
2237    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2238    where
2239        F: FnMut(&mut T) -> K,
2240        K: PartialEq,
2241    {
2242        self.dedup_by(|a, b| key(a) == key(b))
2243    }
2244
2245    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2246    /// relation.
2247    ///
2248    /// The `same_bucket` function is passed references to two elements from the vector and
2249    /// must determine if the elements compare equal. The elements are passed in opposite order
2250    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2251    ///
2252    /// If the vector is sorted, this removes all duplicates.
2253    ///
2254    /// # Examples
2255    ///
2256    /// ```
2257    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2258    ///
2259    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2260    ///
2261    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2262    /// ```
2263    #[stable(feature = "dedup_by", since = "1.16.0")]
2264    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2265    where
2266        F: FnMut(&mut T, &mut T) -> bool,
2267    {
2268        let len = self.len();
2269        if len <= 1 {
2270            return;
2271        }
2272
2273        // Check if we ever want to remove anything.
2274        // This allows to use copy_non_overlapping in next cycle.
2275        // And avoids any memory writes if we don't need to remove anything.
2276        let mut first_duplicate_idx: usize = 1;
2277        let start = self.as_mut_ptr();
2278        while first_duplicate_idx != len {
2279            let found_duplicate = unsafe {
2280                // SAFETY: first_duplicate always in range [1..len)
2281                // Note that we start iteration from 1 so we never overflow.
2282                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2283                let current = start.add(first_duplicate_idx);
2284                // We explicitly say in docs that references are reversed.
2285                same_bucket(&mut *current, &mut *prev)
2286            };
2287            if found_duplicate {
2288                break;
2289            }
2290            first_duplicate_idx += 1;
2291        }
2292        // Don't need to remove anything.
2293        // We cannot get bigger than len.
2294        if first_duplicate_idx == len {
2295            return;
2296        }
2297
2298        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2299        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2300            /* Offset of the element we want to check if it is duplicate */
2301            read: usize,
2302
2303            /* Offset of the place where we want to place the non-duplicate
2304             * when we find it. */
2305            write: usize,
2306
2307            /* The Vec that would need correction if `same_bucket` panicked */
2308            vec: &'a mut Vec<T, A>,
2309        }
2310
2311        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2312            fn drop(&mut self) {
2313                /* This code gets executed when `same_bucket` panics */
2314
2315                /* SAFETY: invariant guarantees that `read - write`
2316                 * and `len - read` never overflow and that the copy is always
2317                 * in-bounds. */
2318                unsafe {
2319                    let ptr = self.vec.as_mut_ptr();
2320                    let len = self.vec.len();
2321
2322                    /* How many items were left when `same_bucket` panicked.
2323                     * Basically vec[read..].len() */
2324                    let items_left = len.wrapping_sub(self.read);
2325
2326                    /* Pointer to first item in vec[write..write+items_left] slice */
2327                    let dropped_ptr = ptr.add(self.write);
2328                    /* Pointer to first item in vec[read..] slice */
2329                    let valid_ptr = ptr.add(self.read);
2330
2331                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2332                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2333                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2334
2335                    /* How many items have been already dropped
2336                     * Basically vec[read..write].len() */
2337                    let dropped = self.read.wrapping_sub(self.write);
2338
2339                    self.vec.set_len(len - dropped);
2340                }
2341            }
2342        }
2343
2344        /* Drop items while going through Vec, it should be more efficient than
2345         * doing slice partition_dedup + truncate */
2346
2347        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2348        let mut gap =
2349            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2350        unsafe {
2351            // SAFETY: we checked that first_duplicate_idx in bounds before.
2352            // If drop panics, `gap` would remove this item without drop.
2353            ptr::drop_in_place(start.add(first_duplicate_idx));
2354        }
2355
2356        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2357         * are always in-bounds and read_ptr never aliases prev_ptr */
2358        unsafe {
2359            while gap.read < len {
2360                let read_ptr = start.add(gap.read);
2361                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2362
2363                // We explicitly say in docs that references are reversed.
2364                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2365                if found_duplicate {
2366                    // Increase `gap.read` now since the drop may panic.
2367                    gap.read += 1;
2368                    /* We have found duplicate, drop it in-place */
2369                    ptr::drop_in_place(read_ptr);
2370                } else {
2371                    let write_ptr = start.add(gap.write);
2372
2373                    /* read_ptr cannot be equal to write_ptr because at this point
2374                     * we guaranteed to skip at least one element (before loop starts).
2375                     */
2376                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2377
2378                    /* We have filled that place, so go further */
2379                    gap.write += 1;
2380                    gap.read += 1;
2381                }
2382            }
2383
2384            /* Technically we could let `gap` clean up with its Drop, but
2385             * when `same_bucket` is guaranteed to not panic, this bloats a little
2386             * the codegen, so we just do it manually */
2387            gap.vec.set_len(gap.write);
2388            mem::forget(gap);
2389        }
2390    }
2391
2392    /// Appends an element to the back of a collection.
2393    ///
2394    /// # Panics
2395    ///
2396    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2397    ///
2398    /// # Examples
2399    ///
2400    /// ```
2401    /// let mut vec = vec![1, 2];
2402    /// vec.push(3);
2403    /// assert_eq!(vec, [1, 2, 3]);
2404    /// ```
2405    ///
2406    /// # Time complexity
2407    ///
2408    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2409    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2410    /// vector's elements to a larger allocation. This expensive operation is
2411    /// offset by the *capacity* *O*(1) insertions it allows.
2412    #[cfg(not(no_global_oom_handling))]
2413    #[inline]
2414    #[stable(feature = "rust1", since = "1.0.0")]
2415    #[rustc_confusables("push_back", "put", "append")]
2416    #[track_caller]
2417    pub fn push(&mut self, value: T) {
2418        // Inform codegen that the length does not change across grow_one().
2419        let len = self.len;
2420        // This will panic or abort if we would allocate > isize::MAX bytes
2421        // or if the length increment would overflow for zero-sized types.
2422        if len == self.buf.capacity() {
2423            self.buf.grow_one();
2424        }
2425        unsafe {
2426            let end = self.as_mut_ptr().add(len);
2427            ptr::write(end, value);
2428            self.len = len + 1;
2429        }
2430    }
2431
2432    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
2433    /// with the element.
2434    ///
2435    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2436    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2437    ///
2438    /// [`push`]: Vec::push
2439    /// [`reserve`]: Vec::reserve
2440    /// [`try_reserve`]: Vec::try_reserve
2441    ///
2442    /// # Examples
2443    ///
2444    /// A manual, panic-free alternative to [`FromIterator`]:
2445    ///
2446    /// ```
2447    /// #![feature(vec_push_within_capacity)]
2448    ///
2449    /// use std::collections::TryReserveError;
2450    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2451    ///     let mut vec = Vec::new();
2452    ///     for value in iter {
2453    ///         if let Err(value) = vec.push_within_capacity(value) {
2454    ///             vec.try_reserve(1)?;
2455    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2456    ///             let _ = vec.push_within_capacity(value);
2457    ///         }
2458    ///     }
2459    ///     Ok(vec)
2460    /// }
2461    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2462    /// ```
2463    ///
2464    /// # Time complexity
2465    ///
2466    /// Takes *O*(1) time.
2467    #[inline]
2468    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2469    pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2470        if self.len == self.buf.capacity() {
2471            return Err(value);
2472        }
2473        unsafe {
2474            let end = self.as_mut_ptr().add(self.len);
2475            ptr::write(end, value);
2476            self.len += 1;
2477        }
2478        Ok(())
2479    }
2480
2481    /// Removes the last element from a vector and returns it, or [`None`] if it
2482    /// is empty.
2483    ///
2484    /// If you'd like to pop the first element, consider using
2485    /// [`VecDeque::pop_front`] instead.
2486    ///
2487    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2488    ///
2489    /// # Examples
2490    ///
2491    /// ```
2492    /// let mut vec = vec![1, 2, 3];
2493    /// assert_eq!(vec.pop(), Some(3));
2494    /// assert_eq!(vec, [1, 2]);
2495    /// ```
2496    ///
2497    /// # Time complexity
2498    ///
2499    /// Takes *O*(1) time.
2500    #[inline]
2501    #[stable(feature = "rust1", since = "1.0.0")]
2502    #[cfg_attr(not(test), rustc_diagnostic_item = "vec_pop")]
2503    pub fn pop(&mut self) -> Option<T> {
2504        if self.len == 0 {
2505            None
2506        } else {
2507            unsafe {
2508                self.len -= 1;
2509                core::hint::assert_unchecked(self.len < self.capacity());
2510                Some(ptr::read(self.as_ptr().add(self.len())))
2511            }
2512        }
2513    }
2514
2515    /// Removes and returns the last element from a vector if the predicate
2516    /// returns `true`, or [`None`] if the predicate returns false or the vector
2517    /// is empty (the predicate will not be called in that case).
2518    ///
2519    /// # Examples
2520    ///
2521    /// ```
2522    /// let mut vec = vec![1, 2, 3, 4];
2523    /// let pred = |x: &mut i32| *x % 2 == 0;
2524    ///
2525    /// assert_eq!(vec.pop_if(pred), Some(4));
2526    /// assert_eq!(vec, [1, 2, 3]);
2527    /// assert_eq!(vec.pop_if(pred), None);
2528    /// ```
2529    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2530    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2531        let last = self.last_mut()?;
2532        if predicate(last) { self.pop() } else { None }
2533    }
2534
2535    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2536    ///
2537    /// # Panics
2538    ///
2539    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2540    ///
2541    /// # Examples
2542    ///
2543    /// ```
2544    /// let mut vec = vec![1, 2, 3];
2545    /// let mut vec2 = vec![4, 5, 6];
2546    /// vec.append(&mut vec2);
2547    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2548    /// assert_eq!(vec2, []);
2549    /// ```
2550    #[cfg(not(no_global_oom_handling))]
2551    #[inline]
2552    #[stable(feature = "append", since = "1.4.0")]
2553    #[track_caller]
2554    pub fn append(&mut self, other: &mut Self) {
2555        unsafe {
2556            self.append_elements(other.as_slice() as _);
2557            other.set_len(0);
2558        }
2559    }
2560
2561    /// Appends elements to `self` from other buffer.
2562    #[cfg(not(no_global_oom_handling))]
2563    #[inline]
2564    #[track_caller]
2565    unsafe fn append_elements(&mut self, other: *const [T]) {
2566        let count = unsafe { (*other).len() };
2567        self.reserve(count);
2568        let len = self.len();
2569        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2570        self.len += count;
2571    }
2572
2573    /// Removes the subslice indicated by the given range from the vector,
2574    /// returning a double-ended iterator over the removed subslice.
2575    ///
2576    /// If the iterator is dropped before being fully consumed,
2577    /// it drops the remaining removed elements.
2578    ///
2579    /// The returned iterator keeps a mutable borrow on the vector to optimize
2580    /// its implementation.
2581    ///
2582    /// # Panics
2583    ///
2584    /// Panics if the starting point is greater than the end point or if
2585    /// the end point is greater than the length of the vector.
2586    ///
2587    /// # Leaking
2588    ///
2589    /// If the returned iterator goes out of scope without being dropped (due to
2590    /// [`mem::forget`], for example), the vector may have lost and leaked
2591    /// elements arbitrarily, including elements outside the range.
2592    ///
2593    /// # Examples
2594    ///
2595    /// ```
2596    /// let mut v = vec![1, 2, 3];
2597    /// let u: Vec<_> = v.drain(1..).collect();
2598    /// assert_eq!(v, &[1]);
2599    /// assert_eq!(u, &[2, 3]);
2600    ///
2601    /// // A full range clears the vector, like `clear()` does
2602    /// v.drain(..);
2603    /// assert_eq!(v, &[]);
2604    /// ```
2605    #[stable(feature = "drain", since = "1.6.0")]
2606    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2607    where
2608        R: RangeBounds<usize>,
2609    {
2610        // Memory safety
2611        //
2612        // When the Drain is first created, it shortens the length of
2613        // the source vector to make sure no uninitialized or moved-from elements
2614        // are accessible at all if the Drain's destructor never gets to run.
2615        //
2616        // Drain will ptr::read out the values to remove.
2617        // When finished, remaining tail of the vec is copied back to cover
2618        // the hole, and the vector length is restored to the new length.
2619        //
2620        let len = self.len();
2621        let Range { start, end } = slice::range(range, ..len);
2622
2623        unsafe {
2624            // set self.vec length's to start, to be safe in case Drain is leaked
2625            self.set_len(start);
2626            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2627            Drain {
2628                tail_start: end,
2629                tail_len: len - end,
2630                iter: range_slice.iter(),
2631                vec: NonNull::from(self),
2632            }
2633        }
2634    }
2635
2636    /// Clears the vector, removing all values.
2637    ///
2638    /// Note that this method has no effect on the allocated capacity
2639    /// of the vector.
2640    ///
2641    /// # Examples
2642    ///
2643    /// ```
2644    /// let mut v = vec![1, 2, 3];
2645    ///
2646    /// v.clear();
2647    ///
2648    /// assert!(v.is_empty());
2649    /// ```
2650    #[inline]
2651    #[stable(feature = "rust1", since = "1.0.0")]
2652    pub fn clear(&mut self) {
2653        let elems: *mut [T] = self.as_mut_slice();
2654
2655        // SAFETY:
2656        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2657        // - Setting `self.len` before calling `drop_in_place` means that,
2658        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2659        //   do nothing (leaking the rest of the elements) instead of dropping
2660        //   some twice.
2661        unsafe {
2662            self.len = 0;
2663            ptr::drop_in_place(elems);
2664        }
2665    }
2666
2667    /// Returns the number of elements in the vector, also referred to
2668    /// as its 'length'.
2669    ///
2670    /// # Examples
2671    ///
2672    /// ```
2673    /// let a = vec![1, 2, 3];
2674    /// assert_eq!(a.len(), 3);
2675    /// ```
2676    #[inline]
2677    #[stable(feature = "rust1", since = "1.0.0")]
2678    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
2679    #[rustc_confusables("length", "size")]
2680    pub const fn len(&self) -> usize {
2681        let len = self.len;
2682
2683        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2684        // be returned is `usize::checked_div(mem::size_of::<T>()).unwrap_or(usize::MAX)`, which
2685        // matches the definition of `T::MAX_SLICE_LEN`.
2686        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2687
2688        len
2689    }
2690
2691    /// Returns `true` if the vector contains no elements.
2692    ///
2693    /// # Examples
2694    ///
2695    /// ```
2696    /// let mut v = Vec::new();
2697    /// assert!(v.is_empty());
2698    ///
2699    /// v.push(1);
2700    /// assert!(!v.is_empty());
2701    /// ```
2702    #[stable(feature = "rust1", since = "1.0.0")]
2703    #[cfg_attr(not(test), rustc_diagnostic_item = "vec_is_empty")]
2704    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
2705    pub const fn is_empty(&self) -> bool {
2706        self.len() == 0
2707    }
2708
2709    /// Splits the collection into two at the given index.
2710    ///
2711    /// Returns a newly allocated vector containing the elements in the range
2712    /// `[at, len)`. After the call, the original vector will be left containing
2713    /// the elements `[0, at)` with its previous capacity unchanged.
2714    ///
2715    /// - If you want to take ownership of the entire contents and capacity of
2716    ///   the vector, see [`mem::take`] or [`mem::replace`].
2717    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2718    /// - If you want to take ownership of an arbitrary subslice, or you don't
2719    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2720    ///
2721    /// # Panics
2722    ///
2723    /// Panics if `at > len`.
2724    ///
2725    /// # Examples
2726    ///
2727    /// ```
2728    /// let mut vec = vec!['a', 'b', 'c'];
2729    /// let vec2 = vec.split_off(1);
2730    /// assert_eq!(vec, ['a']);
2731    /// assert_eq!(vec2, ['b', 'c']);
2732    /// ```
2733    #[cfg(not(no_global_oom_handling))]
2734    #[inline]
2735    #[must_use = "use `.truncate()` if you don't need the other half"]
2736    #[stable(feature = "split_off", since = "1.4.0")]
2737    #[track_caller]
2738    pub fn split_off(&mut self, at: usize) -> Self
2739    where
2740        A: Clone,
2741    {
2742        #[cold]
2743        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2744        #[track_caller]
2745        #[optimize(size)]
2746        fn assert_failed(at: usize, len: usize) -> ! {
2747            panic!("`at` split index (is {at}) should be <= len (is {len})");
2748        }
2749
2750        if at > self.len() {
2751            assert_failed(at, self.len());
2752        }
2753
2754        let other_len = self.len - at;
2755        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2756
2757        // Unsafely `set_len` and copy items to `other`.
2758        unsafe {
2759            self.set_len(at);
2760            other.set_len(other_len);
2761
2762            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2763        }
2764        other
2765    }
2766
2767    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2768    ///
2769    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2770    /// difference, with each additional slot filled with the result of
2771    /// calling the closure `f`. The return values from `f` will end up
2772    /// in the `Vec` in the order they have been generated.
2773    ///
2774    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2775    ///
2776    /// This method uses a closure to create new values on every push. If
2777    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2778    /// want to use the [`Default`] trait to generate values, you can
2779    /// pass [`Default::default`] as the second argument.
2780    ///
2781    /// # Examples
2782    ///
2783    /// ```
2784    /// let mut vec = vec![1, 2, 3];
2785    /// vec.resize_with(5, Default::default);
2786    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2787    ///
2788    /// let mut vec = vec![];
2789    /// let mut p = 1;
2790    /// vec.resize_with(4, || { p *= 2; p });
2791    /// assert_eq!(vec, [2, 4, 8, 16]);
2792    /// ```
2793    #[cfg(not(no_global_oom_handling))]
2794    #[stable(feature = "vec_resize_with", since = "1.33.0")]
2795    #[track_caller]
2796    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2797    where
2798        F: FnMut() -> T,
2799    {
2800        let len = self.len();
2801        if new_len > len {
2802            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2803        } else {
2804            self.truncate(new_len);
2805        }
2806    }
2807
2808    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2809    /// `&'a mut [T]`.
2810    ///
2811    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
2812    /// has only static references, or none at all, then this may be chosen to be
2813    /// `'static`.
2814    ///
2815    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2816    /// so the leaked allocation may include unused capacity that is not part
2817    /// of the returned slice.
2818    ///
2819    /// This function is mainly useful for data that lives for the remainder of
2820    /// the program's life. Dropping the returned reference will cause a memory
2821    /// leak.
2822    ///
2823    /// # Examples
2824    ///
2825    /// Simple usage:
2826    ///
2827    /// ```
2828    /// let x = vec![1, 2, 3];
2829    /// let static_ref: &'static mut [usize] = x.leak();
2830    /// static_ref[0] += 1;
2831    /// assert_eq!(static_ref, &[2, 2, 3]);
2832    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2833    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2834    /// # drop(unsafe { Box::from_raw(static_ref) });
2835    /// ```
2836    #[stable(feature = "vec_leak", since = "1.47.0")]
2837    #[inline]
2838    pub fn leak<'a>(self) -> &'a mut [T]
2839    where
2840        A: 'a,
2841    {
2842        let mut me = ManuallyDrop::new(self);
2843        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2844    }
2845
2846    /// Returns the remaining spare capacity of the vector as a slice of
2847    /// `MaybeUninit<T>`.
2848    ///
2849    /// The returned slice can be used to fill the vector with data (e.g. by
2850    /// reading from a file) before marking the data as initialized using the
2851    /// [`set_len`] method.
2852    ///
2853    /// [`set_len`]: Vec::set_len
2854    ///
2855    /// # Examples
2856    ///
2857    /// ```
2858    /// // Allocate vector big enough for 10 elements.
2859    /// let mut v = Vec::with_capacity(10);
2860    ///
2861    /// // Fill in the first 3 elements.
2862    /// let uninit = v.spare_capacity_mut();
2863    /// uninit[0].write(0);
2864    /// uninit[1].write(1);
2865    /// uninit[2].write(2);
2866    ///
2867    /// // Mark the first 3 elements of the vector as being initialized.
2868    /// unsafe {
2869    ///     v.set_len(3);
2870    /// }
2871    ///
2872    /// assert_eq!(&v, &[0, 1, 2]);
2873    /// ```
2874    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2875    #[inline]
2876    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2877        // Note:
2878        // This method is not implemented in terms of `split_at_spare_mut`,
2879        // to prevent invalidation of pointers to the buffer.
2880        unsafe {
2881            slice::from_raw_parts_mut(
2882                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2883                self.buf.capacity() - self.len,
2884            )
2885        }
2886    }
2887
2888    /// Returns vector content as a slice of `T`, along with the remaining spare
2889    /// capacity of the vector as a slice of `MaybeUninit<T>`.
2890    ///
2891    /// The returned spare capacity slice can be used to fill the vector with data
2892    /// (e.g. by reading from a file) before marking the data as initialized using
2893    /// the [`set_len`] method.
2894    ///
2895    /// [`set_len`]: Vec::set_len
2896    ///
2897    /// Note that this is a low-level API, which should be used with care for
2898    /// optimization purposes. If you need to append data to a `Vec`
2899    /// you can use [`push`], [`extend`], [`extend_from_slice`],
2900    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2901    /// [`resize_with`], depending on your exact needs.
2902    ///
2903    /// [`push`]: Vec::push
2904    /// [`extend`]: Vec::extend
2905    /// [`extend_from_slice`]: Vec::extend_from_slice
2906    /// [`extend_from_within`]: Vec::extend_from_within
2907    /// [`insert`]: Vec::insert
2908    /// [`append`]: Vec::append
2909    /// [`resize`]: Vec::resize
2910    /// [`resize_with`]: Vec::resize_with
2911    ///
2912    /// # Examples
2913    ///
2914    /// ```
2915    /// #![feature(vec_split_at_spare)]
2916    ///
2917    /// let mut v = vec![1, 1, 2];
2918    ///
2919    /// // Reserve additional space big enough for 10 elements.
2920    /// v.reserve(10);
2921    ///
2922    /// let (init, uninit) = v.split_at_spare_mut();
2923    /// let sum = init.iter().copied().sum::<u32>();
2924    ///
2925    /// // Fill in the next 4 elements.
2926    /// uninit[0].write(sum);
2927    /// uninit[1].write(sum * 2);
2928    /// uninit[2].write(sum * 3);
2929    /// uninit[3].write(sum * 4);
2930    ///
2931    /// // Mark the 4 elements of the vector as being initialized.
2932    /// unsafe {
2933    ///     let len = v.len();
2934    ///     v.set_len(len + 4);
2935    /// }
2936    ///
2937    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2938    /// ```
2939    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2940    #[inline]
2941    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2942        // SAFETY:
2943        // - len is ignored and so never changed
2944        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2945        (init, spare)
2946    }
2947
2948    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2949    ///
2950    /// This method provides unique access to all vec parts at once in `extend_from_within`.
2951    unsafe fn split_at_spare_mut_with_len(
2952        &mut self,
2953    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2954        let ptr = self.as_mut_ptr();
2955        // SAFETY:
2956        // - `ptr` is guaranteed to be valid for `self.len` elements
2957        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2958        // uninitialized
2959        let spare_ptr = unsafe { ptr.add(self.len) };
2960        let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2961        let spare_len = self.buf.capacity() - self.len;
2962
2963        // SAFETY:
2964        // - `ptr` is guaranteed to be valid for `self.len` elements
2965        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2966        unsafe {
2967            let initialized = slice::from_raw_parts_mut(ptr, self.len);
2968            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2969
2970            (initialized, spare, &mut self.len)
2971        }
2972    }
2973}
2974
2975impl<T: Clone, A: Allocator> Vec<T, A> {
2976    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2977    ///
2978    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2979    /// difference, with each additional slot filled with `value`.
2980    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2981    ///
2982    /// This method requires `T` to implement [`Clone`],
2983    /// in order to be able to clone the passed value.
2984    /// If you need more flexibility (or want to rely on [`Default`] instead of
2985    /// [`Clone`]), use [`Vec::resize_with`].
2986    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2987    ///
2988    /// # Examples
2989    ///
2990    /// ```
2991    /// let mut vec = vec!["hello"];
2992    /// vec.resize(3, "world");
2993    /// assert_eq!(vec, ["hello", "world", "world"]);
2994    ///
2995    /// let mut vec = vec!['a', 'b', 'c', 'd'];
2996    /// vec.resize(2, '_');
2997    /// assert_eq!(vec, ['a', 'b']);
2998    /// ```
2999    #[cfg(not(no_global_oom_handling))]
3000    #[stable(feature = "vec_resize", since = "1.5.0")]
3001    #[track_caller]
3002    pub fn resize(&mut self, new_len: usize, value: T) {
3003        let len = self.len();
3004
3005        if new_len > len {
3006            self.extend_with(new_len - len, value)
3007        } else {
3008            self.truncate(new_len);
3009        }
3010    }
3011
3012    /// Clones and appends all elements in a slice to the `Vec`.
3013    ///
3014    /// Iterates over the slice `other`, clones each element, and then appends
3015    /// it to this `Vec`. The `other` slice is traversed in-order.
3016    ///
3017    /// Note that this function is the same as [`extend`],
3018    /// except that it also works with slice elements that are Clone but not Copy.
3019    /// If Rust gets specialization this function may be deprecated.
3020    ///
3021    /// # Examples
3022    ///
3023    /// ```
3024    /// let mut vec = vec![1];
3025    /// vec.extend_from_slice(&[2, 3, 4]);
3026    /// assert_eq!(vec, [1, 2, 3, 4]);
3027    /// ```
3028    ///
3029    /// [`extend`]: Vec::extend
3030    #[cfg(not(no_global_oom_handling))]
3031    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3032    #[track_caller]
3033    pub fn extend_from_slice(&mut self, other: &[T]) {
3034        self.spec_extend(other.iter())
3035    }
3036
3037    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3038    ///
3039    /// `src` must be a range that can form a valid subslice of the `Vec`.
3040    ///
3041    /// # Panics
3042    ///
3043    /// Panics if starting index is greater than the end index
3044    /// or if the index is greater than the length of the vector.
3045    ///
3046    /// # Examples
3047    ///
3048    /// ```
3049    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3050    /// characters.extend_from_within(2..);
3051    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3052    ///
3053    /// let mut numbers = vec![0, 1, 2, 3, 4];
3054    /// numbers.extend_from_within(..2);
3055    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3056    ///
3057    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3058    /// strings.extend_from_within(1..=2);
3059    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3060    /// ```
3061    #[cfg(not(no_global_oom_handling))]
3062    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3063    #[track_caller]
3064    pub fn extend_from_within<R>(&mut self, src: R)
3065    where
3066        R: RangeBounds<usize>,
3067    {
3068        let range = slice::range(src, ..self.len());
3069        self.reserve(range.len());
3070
3071        // SAFETY:
3072        // - `slice::range` guarantees that the given range is valid for indexing self
3073        unsafe {
3074            self.spec_extend_from_within(range);
3075        }
3076    }
3077}
3078
3079impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3080    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3081    ///
3082    /// # Panics
3083    ///
3084    /// Panics if the length of the resulting vector would overflow a `usize`.
3085    ///
3086    /// This is only possible when flattening a vector of arrays of zero-sized
3087    /// types, and thus tends to be irrelevant in practice. If
3088    /// `size_of::<T>() > 0`, this will never panic.
3089    ///
3090    /// # Examples
3091    ///
3092    /// ```
3093    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3094    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3095    ///
3096    /// let mut flattened = vec.into_flattened();
3097    /// assert_eq!(flattened.pop(), Some(6));
3098    /// ```
3099    #[stable(feature = "slice_flatten", since = "1.80.0")]
3100    pub fn into_flattened(self) -> Vec<T, A> {
3101        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3102        let (new_len, new_cap) = if T::IS_ZST {
3103            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3104        } else {
3105            // SAFETY:
3106            // - `cap * N` cannot overflow because the allocation is already in
3107            // the address space.
3108            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3109            // valid elements in the allocation.
3110            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3111        };
3112        // SAFETY:
3113        // - `ptr` was allocated by `self`
3114        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3115        // - `new_cap` refers to the same sized allocation as `cap` because
3116        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3117        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3118        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3119    }
3120}
3121
3122impl<T: Clone, A: Allocator> Vec<T, A> {
3123    #[cfg(not(no_global_oom_handling))]
3124    #[track_caller]
3125    /// Extend the vector by `n` clones of value.
3126    fn extend_with(&mut self, n: usize, value: T) {
3127        self.reserve(n);
3128
3129        unsafe {
3130            let mut ptr = self.as_mut_ptr().add(self.len());
3131            // Use SetLenOnDrop to work around bug where compiler
3132            // might not realize the store through `ptr` through self.set_len()
3133            // don't alias.
3134            let mut local_len = SetLenOnDrop::new(&mut self.len);
3135
3136            // Write all elements except the last one
3137            for _ in 1..n {
3138                ptr::write(ptr, value.clone());
3139                ptr = ptr.add(1);
3140                // Increment the length in every step in case clone() panics
3141                local_len.increment_len(1);
3142            }
3143
3144            if n > 0 {
3145                // We can write the last element directly without cloning needlessly
3146                ptr::write(ptr, value);
3147                local_len.increment_len(1);
3148            }
3149
3150            // len set by scope guard
3151        }
3152    }
3153}
3154
3155impl<T: PartialEq, A: Allocator> Vec<T, A> {
3156    /// Removes consecutive repeated elements in the vector according to the
3157    /// [`PartialEq`] trait implementation.
3158    ///
3159    /// If the vector is sorted, this removes all duplicates.
3160    ///
3161    /// # Examples
3162    ///
3163    /// ```
3164    /// let mut vec = vec![1, 2, 2, 3, 2];
3165    ///
3166    /// vec.dedup();
3167    ///
3168    /// assert_eq!(vec, [1, 2, 3, 2]);
3169    /// ```
3170    #[stable(feature = "rust1", since = "1.0.0")]
3171    #[inline]
3172    pub fn dedup(&mut self) {
3173        self.dedup_by(|a, b| a == b)
3174    }
3175}
3176
3177////////////////////////////////////////////////////////////////////////////////
3178// Internal methods and functions
3179////////////////////////////////////////////////////////////////////////////////
3180
3181#[doc(hidden)]
3182#[cfg(not(no_global_oom_handling))]
3183#[stable(feature = "rust1", since = "1.0.0")]
3184#[cfg_attr(not(test), rustc_diagnostic_item = "vec_from_elem")]
3185#[track_caller]
3186pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3187    <T as SpecFromElem>::from_elem(elem, n, Global)
3188}
3189
3190#[doc(hidden)]
3191#[cfg(not(no_global_oom_handling))]
3192#[unstable(feature = "allocator_api", issue = "32838")]
3193#[track_caller]
3194pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3195    <T as SpecFromElem>::from_elem(elem, n, alloc)
3196}
3197
3198#[cfg(not(no_global_oom_handling))]
3199trait ExtendFromWithinSpec {
3200    /// # Safety
3201    ///
3202    /// - `src` needs to be valid index
3203    /// - `self.capacity() - self.len()` must be `>= src.len()`
3204    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3205}
3206
3207#[cfg(not(no_global_oom_handling))]
3208impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3209    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3210        // SAFETY:
3211        // - len is increased only after initializing elements
3212        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3213
3214        // SAFETY:
3215        // - caller guarantees that src is a valid index
3216        let to_clone = unsafe { this.get_unchecked(src) };
3217
3218        iter::zip(to_clone, spare)
3219            .map(|(src, dst)| dst.write(src.clone()))
3220            // Note:
3221            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3222            // - len is increased after each element to prevent leaks (see issue #82533)
3223            .for_each(|_| *len += 1);
3224    }
3225}
3226
3227#[cfg(not(no_global_oom_handling))]
3228impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3229    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3230        let count = src.len();
3231        {
3232            let (init, spare) = self.split_at_spare_mut();
3233
3234            // SAFETY:
3235            // - caller guarantees that `src` is a valid index
3236            let source = unsafe { init.get_unchecked(src) };
3237
3238            // SAFETY:
3239            // - Both pointers are created from unique slice references (`&mut [_]`)
3240            //   so they are valid and do not overlap.
3241            // - Elements are :Copy so it's OK to copy them, without doing
3242            //   anything with the original values
3243            // - `count` is equal to the len of `source`, so source is valid for
3244            //   `count` reads
3245            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3246            //   is valid for `count` writes
3247            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3248        }
3249
3250        // SAFETY:
3251        // - The elements were just initialized by `copy_nonoverlapping`
3252        self.len += count;
3253    }
3254}
3255
3256////////////////////////////////////////////////////////////////////////////////
3257// Common trait implementations for Vec
3258////////////////////////////////////////////////////////////////////////////////
3259
3260#[stable(feature = "rust1", since = "1.0.0")]
3261impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3262    type Target = [T];
3263
3264    #[inline]
3265    fn deref(&self) -> &[T] {
3266        self.as_slice()
3267    }
3268}
3269
3270#[stable(feature = "rust1", since = "1.0.0")]
3271impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3272    #[inline]
3273    fn deref_mut(&mut self) -> &mut [T] {
3274        self.as_mut_slice()
3275    }
3276}
3277
3278#[unstable(feature = "deref_pure_trait", issue = "87121")]
3279unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3280
3281#[cfg(not(no_global_oom_handling))]
3282#[stable(feature = "rust1", since = "1.0.0")]
3283impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3284    #[cfg(not(test))]
3285    #[track_caller]
3286    fn clone(&self) -> Self {
3287        let alloc = self.allocator().clone();
3288        <[T]>::to_vec_in(&**self, alloc)
3289    }
3290
3291    // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
3292    // required for this method definition, is not available. Instead use the
3293    // `slice::to_vec` function which is only available with cfg(test)
3294    // NB see the slice::hack module in slice.rs for more information
3295    #[cfg(test)]
3296    fn clone(&self) -> Self {
3297        let alloc = self.allocator().clone();
3298        crate::slice::to_vec(&**self, alloc)
3299    }
3300
3301    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3302    ///
3303    /// This method is preferred over simply assigning `source.clone()` to `self`,
3304    /// as it avoids reallocation if possible. Additionally, if the element type
3305    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3306    /// elements as well.
3307    ///
3308    /// # Examples
3309    ///
3310    /// ```
3311    /// let x = vec![5, 6, 7];
3312    /// let mut y = vec![8, 9, 10];
3313    /// let yp: *const i32 = y.as_ptr();
3314    ///
3315    /// y.clone_from(&x);
3316    ///
3317    /// // The value is the same
3318    /// assert_eq!(x, y);
3319    ///
3320    /// // And no reallocation occurred
3321    /// assert_eq!(yp, y.as_ptr());
3322    /// ```
3323    #[track_caller]
3324    fn clone_from(&mut self, source: &Self) {
3325        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3326    }
3327}
3328
3329/// The hash of a vector is the same as that of the corresponding slice,
3330/// as required by the `core::borrow::Borrow` implementation.
3331///
3332/// ```
3333/// use std::hash::BuildHasher;
3334///
3335/// let b = std::hash::RandomState::new();
3336/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3337/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3338/// assert_eq!(b.hash_one(v), b.hash_one(s));
3339/// ```
3340#[stable(feature = "rust1", since = "1.0.0")]
3341impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3342    #[inline]
3343    fn hash<H: Hasher>(&self, state: &mut H) {
3344        Hash::hash(&**self, state)
3345    }
3346}
3347
3348#[stable(feature = "rust1", since = "1.0.0")]
3349#[rustc_on_unimplemented(
3350    message = "vector indices are of type `usize` or ranges of `usize`",
3351    label = "vector indices are of type `usize` or ranges of `usize`"
3352)]
3353impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3354    type Output = I::Output;
3355
3356    #[inline]
3357    fn index(&self, index: I) -> &Self::Output {
3358        Index::index(&**self, index)
3359    }
3360}
3361
3362#[stable(feature = "rust1", since = "1.0.0")]
3363#[rustc_on_unimplemented(
3364    message = "vector indices are of type `usize` or ranges of `usize`",
3365    label = "vector indices are of type `usize` or ranges of `usize`"
3366)]
3367impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3368    #[inline]
3369    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3370        IndexMut::index_mut(&mut **self, index)
3371    }
3372}
3373
3374/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3375///
3376/// # Allocation behavior
3377///
3378/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3379/// That also applies to this trait impl.
3380///
3381/// **Note:** This section covers implementation details and is therefore exempt from
3382/// stability guarantees.
3383///
3384/// Vec may use any or none of the following strategies,
3385/// depending on the supplied iterator:
3386///
3387/// * preallocate based on [`Iterator::size_hint()`]
3388///   * and panic if the number of items is outside the provided lower/upper bounds
3389/// * use an amortized growth strategy similar to `pushing` one item at a time
3390/// * perform the iteration in-place on the original allocation backing the iterator
3391///
3392/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3393/// consumption and improves cache locality. But when big, short-lived allocations are created,
3394/// only a small fraction of their items get collected, no further use is made of the spare capacity
3395/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3396/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3397/// footprint.
3398///
3399/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3400/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3401/// the size of the long-lived struct.
3402///
3403/// [owned slice]: Box
3404///
3405/// ```rust
3406/// # use std::sync::Mutex;
3407/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3408///
3409/// for i in 0..10 {
3410///     let big_temporary: Vec<u16> = (0..1024).collect();
3411///     // discard most items
3412///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3413///     // without this a lot of unused capacity might be moved into the global
3414///     result.shrink_to_fit();
3415///     LONG_LIVED.lock().unwrap().push(result);
3416/// }
3417/// ```
3418#[cfg(not(no_global_oom_handling))]
3419#[stable(feature = "rust1", since = "1.0.0")]
3420impl<T> FromIterator<T> for Vec<T> {
3421    #[inline]
3422    #[track_caller]
3423    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3424        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3425    }
3426}
3427
3428#[stable(feature = "rust1", since = "1.0.0")]
3429impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3430    type Item = T;
3431    type IntoIter = IntoIter<T, A>;
3432
3433    /// Creates a consuming iterator, that is, one that moves each value out of
3434    /// the vector (from start to end). The vector cannot be used after calling
3435    /// this.
3436    ///
3437    /// # Examples
3438    ///
3439    /// ```
3440    /// let v = vec!["a".to_string(), "b".to_string()];
3441    /// let mut v_iter = v.into_iter();
3442    ///
3443    /// let first_element: Option<String> = v_iter.next();
3444    ///
3445    /// assert_eq!(first_element, Some("a".to_string()));
3446    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3447    /// assert_eq!(v_iter.next(), None);
3448    /// ```
3449    #[inline]
3450    fn into_iter(self) -> Self::IntoIter {
3451        unsafe {
3452            let me = ManuallyDrop::new(self);
3453            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3454            let buf = me.buf.non_null();
3455            let begin = buf.as_ptr();
3456            let end = if T::IS_ZST {
3457                begin.wrapping_byte_add(me.len())
3458            } else {
3459                begin.add(me.len()) as *const T
3460            };
3461            let cap = me.buf.capacity();
3462            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3463        }
3464    }
3465}
3466
3467#[stable(feature = "rust1", since = "1.0.0")]
3468impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3469    type Item = &'a T;
3470    type IntoIter = slice::Iter<'a, T>;
3471
3472    fn into_iter(self) -> Self::IntoIter {
3473        self.iter()
3474    }
3475}
3476
3477#[stable(feature = "rust1", since = "1.0.0")]
3478impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3479    type Item = &'a mut T;
3480    type IntoIter = slice::IterMut<'a, T>;
3481
3482    fn into_iter(self) -> Self::IntoIter {
3483        self.iter_mut()
3484    }
3485}
3486
3487#[cfg(not(no_global_oom_handling))]
3488#[stable(feature = "rust1", since = "1.0.0")]
3489impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3490    #[inline]
3491    #[track_caller]
3492    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3493        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3494    }
3495
3496    #[inline]
3497    #[track_caller]
3498    fn extend_one(&mut self, item: T) {
3499        self.push(item);
3500    }
3501
3502    #[inline]
3503    #[track_caller]
3504    fn extend_reserve(&mut self, additional: usize) {
3505        self.reserve(additional);
3506    }
3507
3508    #[inline]
3509    unsafe fn extend_one_unchecked(&mut self, item: T) {
3510        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3511        unsafe {
3512            let len = self.len();
3513            ptr::write(self.as_mut_ptr().add(len), item);
3514            self.set_len(len + 1);
3515        }
3516    }
3517}
3518
3519impl<T, A: Allocator> Vec<T, A> {
3520    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3521    // they have no further optimizations to apply
3522    #[cfg(not(no_global_oom_handling))]
3523    #[track_caller]
3524    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3525        // This is the case for a general iterator.
3526        //
3527        // This function should be the moral equivalent of:
3528        //
3529        //      for item in iterator {
3530        //          self.push(item);
3531        //      }
3532        while let Some(element) = iterator.next() {
3533            let len = self.len();
3534            if len == self.capacity() {
3535                let (lower, _) = iterator.size_hint();
3536                self.reserve(lower.saturating_add(1));
3537            }
3538            unsafe {
3539                ptr::write(self.as_mut_ptr().add(len), element);
3540                // Since next() executes user code which can panic we have to bump the length
3541                // after each step.
3542                // NB can't overflow since we would have had to alloc the address space
3543                self.set_len(len + 1);
3544            }
3545        }
3546    }
3547
3548    // specific extend for `TrustedLen` iterators, called both by the specializations
3549    // and internal places where resolving specialization makes compilation slower
3550    #[cfg(not(no_global_oom_handling))]
3551    #[track_caller]
3552    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3553        let (low, high) = iterator.size_hint();
3554        if let Some(additional) = high {
3555            debug_assert_eq!(
3556                low,
3557                additional,
3558                "TrustedLen iterator's size hint is not exact: {:?}",
3559                (low, high)
3560            );
3561            self.reserve(additional);
3562            unsafe {
3563                let ptr = self.as_mut_ptr();
3564                let mut local_len = SetLenOnDrop::new(&mut self.len);
3565                iterator.for_each(move |element| {
3566                    ptr::write(ptr.add(local_len.current_len()), element);
3567                    // Since the loop executes user code which can panic we have to update
3568                    // the length every step to correctly drop what we've written.
3569                    // NB can't overflow since we would have had to alloc the address space
3570                    local_len.increment_len(1);
3571                });
3572            }
3573        } else {
3574            // Per TrustedLen contract a `None` upper bound means that the iterator length
3575            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3576            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3577            // This avoids additional codegen for a fallback code path which would eventually
3578            // panic anyway.
3579            panic!("capacity overflow");
3580        }
3581    }
3582
3583    /// Creates a splicing iterator that replaces the specified range in the vector
3584    /// with the given `replace_with` iterator and yields the removed items.
3585    /// `replace_with` does not need to be the same length as `range`.
3586    ///
3587    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3588    ///
3589    /// It is unspecified how many elements are removed from the vector
3590    /// if the `Splice` value is leaked.
3591    ///
3592    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3593    ///
3594    /// This is optimal if:
3595    ///
3596    /// * The tail (elements in the vector after `range`) is empty,
3597    /// * or `replace_with` yields fewer or equal elements than `range`’s length
3598    /// * or the lower bound of its `size_hint()` is exact.
3599    ///
3600    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3601    ///
3602    /// # Panics
3603    ///
3604    /// Panics if the starting point is greater than the end point or if
3605    /// the end point is greater than the length of the vector.
3606    ///
3607    /// # Examples
3608    ///
3609    /// ```
3610    /// let mut v = vec![1, 2, 3, 4];
3611    /// let new = [7, 8, 9];
3612    /// let u: Vec<_> = v.splice(1..3, new).collect();
3613    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3614    /// assert_eq!(u, [2, 3]);
3615    /// ```
3616    ///
3617    /// Using `splice` to insert new items into a vector efficiently at a specific position
3618    /// indicated by an empty range:
3619    ///
3620    /// ```
3621    /// let mut v = vec![1, 5];
3622    /// let new = [2, 3, 4];
3623    /// v.splice(1..1, new);
3624    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3625    /// ```
3626    #[cfg(not(no_global_oom_handling))]
3627    #[inline]
3628    #[stable(feature = "vec_splice", since = "1.21.0")]
3629    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3630    where
3631        R: RangeBounds<usize>,
3632        I: IntoIterator<Item = T>,
3633    {
3634        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3635    }
3636
3637    /// Creates an iterator which uses a closure to determine if element in the range should be removed.
3638    ///
3639    /// If the closure returns true, then the element is removed and yielded.
3640    /// If the closure returns false, the element will remain in the vector and will not be yielded
3641    /// by the iterator.
3642    ///
3643    /// Only elements that fall in the provided range are considered for extraction, but any elements
3644    /// after the range will still have to be moved if any element has been extracted.
3645    ///
3646    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3647    /// or the iteration short-circuits, then the remaining elements will be retained.
3648    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
3649    ///
3650    /// [`retain`]: Vec::retain
3651    ///
3652    /// Using this method is equivalent to the following code:
3653    ///
3654    /// ```
3655    /// # use std::cmp::min;
3656    /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3657    /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3658    /// # let range = 1..4;
3659    /// let mut i = range.start;
3660    /// while i < min(vec.len(), range.end) {
3661    ///     if some_predicate(&mut vec[i]) {
3662    ///         let val = vec.remove(i);
3663    ///         // your code here
3664    ///     } else {
3665    ///         i += 1;
3666    ///     }
3667    /// }
3668    ///
3669    /// # assert_eq!(vec, vec![1, 4, 5]);
3670    /// ```
3671    ///
3672    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3673    /// because it can backshift the elements of the array in bulk.
3674    ///
3675    /// Note that `extract_if` also lets you mutate the elements passed to the filter closure,
3676    /// regardless of whether you choose to keep or remove them.
3677    ///
3678    /// # Panics
3679    ///
3680    /// If `range` is out of bounds.
3681    ///
3682    /// # Examples
3683    ///
3684    /// Splitting an array into evens and odds, reusing the original allocation:
3685    ///
3686    /// ```
3687    /// #![feature(extract_if)]
3688    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3689    ///
3690    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3691    /// let odds = numbers;
3692    ///
3693    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3694    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3695    /// ```
3696    ///
3697    /// Using the range argument to only process a part of the vector:
3698    ///
3699    /// ```
3700    /// #![feature(extract_if)]
3701    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3702    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3703    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3704    /// assert_eq!(ones.len(), 3);
3705    /// ```
3706    #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
3707    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
3708    where
3709        F: FnMut(&mut T) -> bool,
3710        R: RangeBounds<usize>,
3711    {
3712        ExtractIf::new(self, filter, range)
3713    }
3714}
3715
3716/// Extend implementation that copies elements out of references before pushing them onto the Vec.
3717///
3718/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3719/// append the entire slice at once.
3720///
3721/// [`copy_from_slice`]: slice::copy_from_slice
3722#[cfg(not(no_global_oom_handling))]
3723#[stable(feature = "extend_ref", since = "1.2.0")]
3724impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
3725    #[track_caller]
3726    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3727        self.spec_extend(iter.into_iter())
3728    }
3729
3730    #[inline]
3731    #[track_caller]
3732    fn extend_one(&mut self, &item: &'a T) {
3733        self.push(item);
3734    }
3735
3736    #[inline]
3737    #[track_caller]
3738    fn extend_reserve(&mut self, additional: usize) {
3739        self.reserve(additional);
3740    }
3741
3742    #[inline]
3743    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
3744        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3745        unsafe {
3746            let len = self.len();
3747            ptr::write(self.as_mut_ptr().add(len), item);
3748            self.set_len(len + 1);
3749        }
3750    }
3751}
3752
3753/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3754#[stable(feature = "rust1", since = "1.0.0")]
3755impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
3756where
3757    T: PartialOrd,
3758    A1: Allocator,
3759    A2: Allocator,
3760{
3761    #[inline]
3762    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
3763        PartialOrd::partial_cmp(&**self, &**other)
3764    }
3765}
3766
3767#[stable(feature = "rust1", since = "1.0.0")]
3768impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3769
3770/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3771#[stable(feature = "rust1", since = "1.0.0")]
3772impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3773    #[inline]
3774    fn cmp(&self, other: &Self) -> Ordering {
3775        Ord::cmp(&**self, &**other)
3776    }
3777}
3778
3779#[stable(feature = "rust1", since = "1.0.0")]
3780unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
3781    fn drop(&mut self) {
3782        unsafe {
3783            // use drop for [T]
3784            // use a raw slice to refer to the elements of the vector as weakest necessary type;
3785            // could avoid questions of validity in certain cases
3786            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3787        }
3788        // RawVec handles deallocation
3789    }
3790}
3791
3792#[stable(feature = "rust1", since = "1.0.0")]
3793impl<T> Default for Vec<T> {
3794    /// Creates an empty `Vec<T>`.
3795    ///
3796    /// The vector will not allocate until elements are pushed onto it.
3797    fn default() -> Vec<T> {
3798        Vec::new()
3799    }
3800}
3801
3802#[stable(feature = "rust1", since = "1.0.0")]
3803impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
3804    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3805        fmt::Debug::fmt(&**self, f)
3806    }
3807}
3808
3809#[stable(feature = "rust1", since = "1.0.0")]
3810impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
3811    fn as_ref(&self) -> &Vec<T, A> {
3812        self
3813    }
3814}
3815
3816#[stable(feature = "vec_as_mut", since = "1.5.0")]
3817impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
3818    fn as_mut(&mut self) -> &mut Vec<T, A> {
3819        self
3820    }
3821}
3822
3823#[stable(feature = "rust1", since = "1.0.0")]
3824impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
3825    fn as_ref(&self) -> &[T] {
3826        self
3827    }
3828}
3829
3830#[stable(feature = "vec_as_mut", since = "1.5.0")]
3831impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
3832    fn as_mut(&mut self) -> &mut [T] {
3833        self
3834    }
3835}
3836
3837#[cfg(not(no_global_oom_handling))]
3838#[stable(feature = "rust1", since = "1.0.0")]
3839impl<T: Clone> From<&[T]> for Vec<T> {
3840    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3841    ///
3842    /// # Examples
3843    ///
3844    /// ```
3845    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3846    /// ```
3847    #[cfg(not(test))]
3848    #[track_caller]
3849    fn from(s: &[T]) -> Vec<T> {
3850        s.to_vec()
3851    }
3852    #[cfg(test)]
3853    fn from(s: &[T]) -> Vec<T> {
3854        crate::slice::to_vec(s, Global)
3855    }
3856}
3857
3858#[cfg(not(no_global_oom_handling))]
3859#[stable(feature = "vec_from_mut", since = "1.19.0")]
3860impl<T: Clone> From<&mut [T]> for Vec<T> {
3861    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3862    ///
3863    /// # Examples
3864    ///
3865    /// ```
3866    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3867    /// ```
3868    #[cfg(not(test))]
3869    #[track_caller]
3870    fn from(s: &mut [T]) -> Vec<T> {
3871        s.to_vec()
3872    }
3873    #[cfg(test)]
3874    fn from(s: &mut [T]) -> Vec<T> {
3875        crate::slice::to_vec(s, Global)
3876    }
3877}
3878
3879#[cfg(not(no_global_oom_handling))]
3880#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
3881impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
3882    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3883    ///
3884    /// # Examples
3885    ///
3886    /// ```
3887    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
3888    /// ```
3889    #[track_caller]
3890    fn from(s: &[T; N]) -> Vec<T> {
3891        Self::from(s.as_slice())
3892    }
3893}
3894
3895#[cfg(not(no_global_oom_handling))]
3896#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
3897impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
3898    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
3899    ///
3900    /// # Examples
3901    ///
3902    /// ```
3903    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
3904    /// ```
3905    #[track_caller]
3906    fn from(s: &mut [T; N]) -> Vec<T> {
3907        Self::from(s.as_mut_slice())
3908    }
3909}
3910
3911#[cfg(not(no_global_oom_handling))]
3912#[stable(feature = "vec_from_array", since = "1.44.0")]
3913impl<T, const N: usize> From<[T; N]> for Vec<T> {
3914    /// Allocates a `Vec<T>` and moves `s`'s items into it.
3915    ///
3916    /// # Examples
3917    ///
3918    /// ```
3919    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3920    /// ```
3921    #[cfg(not(test))]
3922    #[track_caller]
3923    fn from(s: [T; N]) -> Vec<T> {
3924        <[T]>::into_vec(Box::new(s))
3925    }
3926
3927    #[cfg(test)]
3928    fn from(s: [T; N]) -> Vec<T> {
3929        crate::slice::into_vec(Box::new(s))
3930    }
3931}
3932
3933#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3934impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3935where
3936    [T]: ToOwned<Owned = Vec<T>>,
3937{
3938    /// Converts a clone-on-write slice into a vector.
3939    ///
3940    /// If `s` already owns a `Vec<T>`, it will be returned directly.
3941    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3942    /// filled by cloning `s`'s items into it.
3943    ///
3944    /// # Examples
3945    ///
3946    /// ```
3947    /// # use std::borrow::Cow;
3948    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3949    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3950    /// assert_eq!(Vec::from(o), Vec::from(b));
3951    /// ```
3952    #[track_caller]
3953    fn from(s: Cow<'a, [T]>) -> Vec<T> {
3954        s.into_owned()
3955    }
3956}
3957
3958// note: test pulls in std, which causes errors here
3959#[cfg(not(test))]
3960#[stable(feature = "vec_from_box", since = "1.18.0")]
3961impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3962    /// Converts a boxed slice into a vector by transferring ownership of
3963    /// the existing heap allocation.
3964    ///
3965    /// # Examples
3966    ///
3967    /// ```
3968    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3969    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3970    /// ```
3971    fn from(s: Box<[T], A>) -> Self {
3972        s.into_vec()
3973    }
3974}
3975
3976// note: test pulls in std, which causes errors here
3977#[cfg(not(no_global_oom_handling))]
3978#[cfg(not(test))]
3979#[stable(feature = "box_from_vec", since = "1.20.0")]
3980impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3981    /// Converts a vector into a boxed slice.
3982    ///
3983    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
3984    ///
3985    /// [owned slice]: Box
3986    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
3987    ///
3988    /// # Examples
3989    ///
3990    /// ```
3991    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3992    /// ```
3993    ///
3994    /// Any excess capacity is removed:
3995    /// ```
3996    /// let mut vec = Vec::with_capacity(10);
3997    /// vec.extend([1, 2, 3]);
3998    ///
3999    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4000    /// ```
4001    #[track_caller]
4002    fn from(v: Vec<T, A>) -> Self {
4003        v.into_boxed_slice()
4004    }
4005}
4006
4007#[cfg(not(no_global_oom_handling))]
4008#[stable(feature = "rust1", since = "1.0.0")]
4009impl From<&str> for Vec<u8> {
4010    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4011    ///
4012    /// # Examples
4013    ///
4014    /// ```
4015    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4016    /// ```
4017    #[track_caller]
4018    fn from(s: &str) -> Vec<u8> {
4019        From::from(s.as_bytes())
4020    }
4021}
4022
4023#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4024impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4025    type Error = Vec<T, A>;
4026
4027    /// Gets the entire contents of the `Vec<T>` as an array,
4028    /// if its size exactly matches that of the requested array.
4029    ///
4030    /// # Examples
4031    ///
4032    /// ```
4033    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4034    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4035    /// ```
4036    ///
4037    /// If the length doesn't match, the input comes back in `Err`:
4038    /// ```
4039    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4040    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4041    /// ```
4042    ///
4043    /// If you're fine with just getting a prefix of the `Vec<T>`,
4044    /// you can call [`.truncate(N)`](Vec::truncate) first.
4045    /// ```
4046    /// let mut v = String::from("hello world").into_bytes();
4047    /// v.sort();
4048    /// v.truncate(2);
4049    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4050    /// assert_eq!(a, b' ');
4051    /// assert_eq!(b, b'd');
4052    /// ```
4053    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4054        if vec.len() != N {
4055            return Err(vec);
4056        }
4057
4058        // SAFETY: `.set_len(0)` is always sound.
4059        unsafe { vec.set_len(0) };
4060
4061        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4062        // the alignment the array needs is the same as the items.
4063        // We checked earlier that we have sufficient items.
4064        // The items will not double-drop as the `set_len`
4065        // tells the `Vec` not to also drop them.
4066        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4067        Ok(array)
4068    }
4069}